首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   7篇
  188篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   10篇
  2013年   17篇
  2012年   3篇
  2011年   11篇
  2010年   6篇
  2009年   8篇
  2008年   11篇
  2007年   11篇
  2006年   16篇
  2005年   7篇
  2004年   2篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   7篇
  1999年   10篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1925年   1篇
  1922年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
71.

Objective

To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae.

Results

Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man3GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins.

Conclusions

Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.
  相似文献   
72.
The protein p130 was isolated from rat brain as an inositol 1,4,5-trisphosphate-binding protein with a domain organization similar to that of phospholipase C-delta1 but lacking PLC activity. We show that p130 plays an important role in signaling by the type A receptor for gamma-aminobutyric acid (GABA). Yeast twohybrid screening identified GABARAP (GABA(A) receptor-associated protein), which is proposed to contribute to the sorting, targeting or clustering of GABA(A) receptors, as a protein that interacts with p130. Furthermore, p130 competitively inhibited the binding of the gamma2 subunit of the GABA(A) receptor to GABARAP in vitro. Electrophysiological analysis revealed that the modulation of GABA-induced Cl- current by Zn2+ or diazepam, both of which act at GABA(A) receptors containing gamma subunits, is impaired in hippocampal neurons of p130 knockout mice. Moreover, behavioral analysis revealed that motor coordination was impaired and the intraperitoneal injection of diazepam induced markedly reduced sedative and antianxiety effects in the mutant mice. These results indicate that p130 is essential for the function of GABA(A) receptors, especially in response to the agents acting on a gamma2 subunit.  相似文献   
73.
When damaged, skeletal muscle regenerates. In the early phases of regeneration, inflammatory cells such as neutrophils/granulocytes and macrophages infiltrate damaged muscle tissue. To reveal the roles of macrophages during skeletal muscle regeneration, we injected an antibody, AFS98 that blocks the binding of M-CSF to its receptor into normal mice that received muscle damages. Anti-M-CSF receptor administration suppressed macrophage but not neutrophil infiltration. Histological study indicated that suppression of macrophages function leads to the incomplete muscle regeneration. In addition FACS and immunohistochemical study showed that the acute lack of macrophages delayed proliferation and differentiation of muscle satellite cells in vivo. Furthermore, mice injected with the anti-M-CSF receptor antibody exhibited not only adipogenesis, but also significant collagen deposition, i.e., fibrosis and continuous high expression of connective tissue growth factor. Finally we indicate that these fibrosis markers were strongly enriched in CD90(+) cells that do not include myogenic cells. These results indicate that macrophages directly affect satellite cell proliferation and that a macrophage deficiency severely impairs skeletal muscle regeneration and causes fibrosis.  相似文献   
74.
The secondary alcohol oxidase from Pseudomonas sp. catalyzed the oxidation of various vinyl alcohol oligomers with the molecular weight of 220 to 1500 and of β-ketols such as 5-hydroxy-3-heptanone, 4-hydroxy-2-nonanone, 3-hydroxy-5-nonanone, 6-hydroxy-4-nonanone, 7-hydroxy-5-dodecanone, and 8-hydroxy-6-tridecanone. β-Diketone hydrolase from the same strain catalyzed the hydrolysis of various aliphatic β-diketones and some aromatic β-diketones such as 1-phenyl-1,3-butanedione and 1-phenyl-2,4-pentanedione. 4,6-Nonanediol, used as a low molecular weight model of poly(vinyl alcohol) (PVA), was oxidized to 4,6-nonanedione by way of 6-hydroxy-4-nonanone by secondary alcohol oxidase. 4,6-Nonanedione was hydrolyzed to 2-pentanone and n-butyric acid by β-diketone hydrolase. These reactions were stoichiometric.

The presence of the β-diketone structure in PVA oxidized by secondary alcohol oxidase was confirmed by spectral experiments. The absorption due to β-diketone structure in the oxidized PVA decreased as it was hydrolyzed by β-diketone hydrolase. The ratio of the amount of carboxyl groups in the degraded PVA to that of carbonyl groups in the oxidized PVA became more than 0.5. A pathway for the enzymatic degradation of PVA was proposed.  相似文献   
75.
Methylation of cytosine residues in CpG dinucleotides plays an important role in epigenetic regulation of gene expression and chromatin structure/stability in higher eukaryotes. DNA methylation patterns are established and maintained at CpG dinucleotides by DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b). In mammals and many other eukaryotes, the CpG dinucleotide is underrepresented in the genome. This loss is postulated to be the result of unrepaired deamination of cytosine and 5-methylcytosine to uracil and thymine, respectively. Two thymine glycosylases are believed to reduce the impact of 5-methylcytosine deamination. G/T mismatch-specific thymine-DNA glycosylase (Tdg) and methyl-CpG binding domain protein 4 can both excise uracil or thymine at U·G and T·G mismatches to initiate base excision repair. Here, we report the characterization of interactions between Dnmt3b and both Tdg and methyl-CpG binding domain protein 4. Our results demonstrate (1) that both Tdg and Dnmt3b are colocalized to heterochromatin and (2) reduction of T·G mismatch repair efficiency upon loss of DNA methyltransferase expression, as well as a requirement for an RNA component for correct T·G mismatch repair.  相似文献   
76.
Biolistic bombardment was used to successfully transform three phytopathogenic fungal species with an infectious cDNA clone of the prototypic hypovirus, CHV1-EP713, a genetic element responsible for the virulence attenuation (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica. The fungal species included two strains each of C. parasitica and Valsa ceratosperma, as well as one strain of Phomopsis G-type (teleomorph Diaporthe Nitschke); all are members of the order Diaporthales but classified into three different genera. A subset of transformants for each of the fungal species contained CHV1-EP713 dsRNA derived from chromosomally integrated viral cDNA. As has been reported for CHV1-EP713 infection of the natural host C parasitica, biolistic introduction of CHV1-EP713 into the new fungal hosts V ceratosperma and Phomopsis G-type resulted in altered colony morphology and, more importantly, reduced virulence. These results suggest a potential for hypoviruses as biological control agents in plant-infecting fungal pathogens other than the chestnut blight fungus and closely related species. In addition, the particle delivery technique offers a convenient means of transmitting hypoviruses to potential host fungi that provides new avenues for fundamental mycovirus research and may have practical applications for conferring hypovirulence directly on infected plants in the field.  相似文献   
77.
It is important to both physiological and pathological osteogenesis to understand the significance of changes in gene expression in growth-plate chondrocytes that transit between the proliferative and hypertrophic states. MINPP is one such gene of interest. The Minpp protein dephosphorylates highly phosphorylated inositol signaling molecules InsP(5) and InsP(6). We show here that the ATDC5 chondrocyte progenitor cell line can recapitulate developmentally specific changes in MINPP expression previously only seen in longitudinal bone growth plates-both an initial 2-3-fold increase and a subsequent decrease back to initial levels during transition to hypertrophy. The increase in MINPP expression was accompanied by a 40% decrease in InsP(6) levels in ATDC5 cells. However, InsP(5) levels were not modified. Furthermore, throughout the hypertrophic phase, during which MINPP expression decreased, there were no alterations in InsP(5) and InsP(6) levels. We also created an ATDC5 line that stably overexpressed Minpp at 2-fold higher levels than in wild-type cells. This had no significant effect upon cellular levels of InsP(5) and InsP(6). Thus, substantial changes in MINPP expression can occur without a net effect upon InsP(5) and InsP(6) turnover in vivo. On the other hand, Minpp-overexpressing cells showed impaired chondrogenesis. We noted that the expression of alkaline phosphatase activity was inversely correlated with the expression of MINPP. The ATDC5 cells that overexpress Minpp failed to show an insulin-dependent increase in alkaline phosphatase levels, which presumably affects phosphate balance [J. Biol. Chem. 276 (2001) 33995], and may be the reason cellular differentiation was impaired. In any case, we conclude that Minpp is important to chondrocyte differentiation, but in a manner that is, surprisingly, independent of inositol polyphosphate turnover.  相似文献   
78.
White root rot, caused by the ascomycete Rosellinia necatrix, is a devastating disease worldwide, particularly in fruit trees in Japan. Here we report on the biological and molecular properties of a novel bipartite double-stranded RNA (dsRNA) virus encompassing dsRNA-1 (8,931 bp) and dsRNA-2 (7,180 bp), which was isolated from a field strain of R. necatrix, W779. Besides the strictly conserved 5′ (24 nt) and 3′ (8 nt) terminal sequences, both segments show high levels of sequence similarity in the long 5′ untranslated region of approximately 1.6 kbp. dsRNA-1 and -2 each possess two open reading frames (ORFs) named ORF1 to -4. Although the protein encoded by 3′-proximal ORF2 on dsRNA-1 shows sequence identities of 22 to 32% with RNA-dependent RNA polymerases from members of the families Totiviridae and Chrysoviridae, the remaining three virus-encoded proteins lack sequence similarities with any reported mycovirus proteins. Phylogenetic analysis showed that the W779 virus belongs to a separate clade distinct from those of other known mycoviruses. Purified virions ∼50 nm in diameter consisted of dsRNA-1 and -2 and a single major capsid protein of 135 kDa, which was shown by peptide mass fingerprinting to be encoded by dsRNA-1 ORF1. We developed a transfection protocol using purified virions to show that the virus was responsible for reduction of virulence and mycelial growth in several host strains. These combined results indicate that the W779 virus is a novel bipartite dsRNA virus with potential for biological control (virocontrol), named Rosellinia necatrix megabirnavirus 1 (RnMBV1), that possibly belongs to a new virus family.Viruses are found ubiquitously in major groups of filamentous fungi (40), and an increasing number of novel mycoviruses are being reported (3, 36). Mycoviruses with RNA genomes are now classified into 10 families, of which four accommodate double-stranded RNA (dsRNA) viruses and the remaining six comprise single-stranded RNA (ssRNA) viruses (23). While many ssRNA mycoviruses, like hypoviruses and endornaviruses, do not produce particles, dsRNA virus genomes, whether undivided (the family Totiviridae) or divided (11 or 12 segments for the family Reoviridae, 4 segments for the family Chrysoviridae, and 2 segments for the family Partitiviridae), are encapsidated in rigid particles. Most mycoviruses are considered to cause cryptic infections, while some cause phenotypic alterations that include hypovirulence and debilitation. However, the lack of artificial introduction methods for most mycoviruses has greatly hampered progress in exploring mycovirus-host interactions (23, 40). Thus, a virus etiology of altered fungal phenotypes was established only for a limited number of examples, including hypovirus-C. parasitica and mycoreovirus-C. parasitica.White root rot is one of the most devastating diseases of perennial crops worldwide, particularly highly valued fruits in Japan like apple, Japanese pear, and grapevine. The causal fungus, Rosellinia necatrix, is an ascomycete with a wide range of host plants of >197 species spanning 50 families (31) and is difficult to control by conventional methods, as is often the case for soilborne pathogens. Fungicide application, though it may be effective, is labor-intensive and raises environmental concerns, while cultural practices may not be effective. Successful biocontrol of chestnut blight disease in Europe with hypovirulent strains (25, 38) inspired a group of Japanese researchers to conduct an extensive search of a large collection of >1,000 field fungal isolates for mycoviruses that might serve as virocontrol agents. Virocontrol or virological control refers to one form of biological control utilizing viruses that infect organisms pathogenic to useful organisms (23). Approximately 20% of the collected isolates of R. necatrix were found to be dsRNA positive and presumed to be infected by mycoviruses (4, 29). Agarose gel profiles of dsRNAs suggested infections by members in the families Totiviridae, Partitiviridae, Reoviridae, and Chrysoviridae, as well as unassigned viruses (S. Kanematsu and A. Sasaki, unpublished results). Among those dsRNAs, the genomic segments of Mycoreovirus 3 (MyRV3) (55) and Rosellinia necatrix partitivirus 1 (RnPV1) (44) were well characterized. However, many other dsRNAs remain uncharacterized.Artificial virion introduction protocols, which are often unavailable for mycoviruses, have been developed for specific viruses infecting the white root rot fungus. Using a polyethylene glycol (PEG)-mediated method, as established for MyRV1 and MyRV2 infecting C. parasitaca (27, 28), RnPV1 and MyRV3 were shown to be infectious as particles (45, 46). Subsequently, the cause-effect relationship was established: MyRV3 was demonstrated to confer hypovirulence (attenuated virulence) on an isogenic strain and a few vegetatively incompatible virulent strains of R. necatrix (33, 45), while RnPV1 was shown to be associated with symptomless infection. Protoplast fusion is also available for introduction of partitiviruses and uncharacterized viruses into recipient fungal strains that are vegetatively incompatible with virus-containing ones (A. Sasaki, unpublished results). Furthermore, DNA transformation systems are available for foreign gene expression in R. necatrix (33, 42). These technical advances have made the R. necatrix-mycovirus systems attractive for studies of virus-host interactions and virocontrol (23, 37).R. necatrix strain W779 was isolated by Ikeda et al. (29, 30) from soil in Ibaraki Prefecture as a dsRNA-positive strain that had yet to be characterized. Here we describe the purification and biological and molecular properties of a novel virus isolated from W779. Particles ∼50 nm in diameter isolated from strain W779 consist of two dsRNA elements termed dsRNA-1 and -2 of approximately 9 and 7 kbp and a major protein of 135 kDa encoded by one of two open reading frames (ORFs) on dsRNA-1. Importantly, purified virus particles were shown to be infectious and confer hypovirulence on vegetatively incompatible fungal strains. The two dsRNA segments share the conserved terminal sequences at both ends, and both possess extremely long (>1.6 kb) 5′ untranslated regions (UTRs) similar to each other, two ORFs, and relatively short 3′ UTRs. The 3′-proximal ORF of dsRNA-1 encodes an RNA-dependent RNA polymerase (RdRp) showing low levels (22 to 32%) of sequence identity to those of members of the families Totiviridae and Chrysoviridae. A phylogenetic analysis with RdRp sequences revealed that the W779 virus is placed into a separate clade from the recognized virus families. These attributes indicate that dsRNA-1 and -2 represent the genome segments of a novel bipartite virus, designated Rosellinia necatrix megabirnavirus 1 (RnMBV1), with virolocontrol agent potential. We propose the establishment of a new family, Megabirnaviridae, to accommodate RnMBV1 as the type species.  相似文献   
79.
MicroRNAs (miRNAs) are small non-coding RNAs mediating the regulation of gene expression in various biological contexts, including carcinogenesis. Here, we screened putative associations between 34, 45, and 103 miRNAs and 164, 391, and 81 mRNAs via Argonaute1 (Ago1) or Ago2 immunoprecipitation (IP) experiments in a colon cancer cell line. We used a combination of RIP Seq analysis. RNAs that were co-immunoprecipitated with Ago1 or Ago2 were used for massively parallel small RNA and mRNA sequencing. The detected miRNAs and mRNAs were further associated with one another based on in silico target predictions. Analysis of the putative associations indicated that, although Ago1 and Ago2 shared a similar repertory of miRNAs, the mRNAs possibly regulated by those miRNAs seemed different. The mRNAs detected with Ago1 IP were indicated to be frequently associated with genes having constitutive cellular functions, regulated by a smaller number of miRNAs, and appeared to receive more stringent translational regulation. In contrast, putative miRNA-mRNA associations detected with Ago2 IP appeared to be related to signal transduction genes, which had a larger number of possible miRNA binding sites. We then conducted a similar analysis using the colon cancer cells cultured under hypoxia and identified potential hypoxia-induced miRNA-mRNA associations, which included several well-characterized cancer-related genes as novel putative miRNA targets.  相似文献   
80.
Monoclonal antibodies for identification of Borrelia japonica isolated from tick, Ixodes ovatus and long-tailed shrew, Sorex unguiculatus in Japan and Borrelia related to Lyme disease (Borrelia burgdorferi sensu lato) were prepared and characterized. All isolates belonging to B. japonica and isolates from I. dentatus and cottontail rabbit in North America reacted with MAb O1441b against flagellin which was prepared from immunized mice with strain HO14, type strain of B. japonica, but isolates from I. persulcatus, patient, and wood mouse, Apodemus speciosus ainu, in Japan, and isolates belonging to B. burgdorferi, B. garinii and B. afzelii from North America and Europe did not. Strains used in this study reacted with MAb P62 against common antigen which was prepared from immunized mice with strain NT24 isolated from I. persulcatus in Japan, but B. japonica did not. These MAbs are useful for identification and differentiation of B. japonica and B. burgdorferi sensu lato in Japan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号