首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   721篇
  免费   33篇
  2022年   7篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   7篇
  2016年   10篇
  2015年   14篇
  2014年   17篇
  2013年   113篇
  2012年   46篇
  2011年   36篇
  2010年   24篇
  2009年   32篇
  2008年   35篇
  2007年   37篇
  2006年   37篇
  2005年   49篇
  2004年   39篇
  2003年   29篇
  2002年   28篇
  2001年   8篇
  2000年   4篇
  1999年   7篇
  1998年   13篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   8篇
  1992年   7篇
  1991年   9篇
  1990年   4篇
  1989年   7篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   8篇
  1982年   8篇
  1981年   9篇
  1980年   4篇
  1979年   8篇
  1978年   5篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1971年   3篇
  1967年   5篇
排序方式: 共有754条查询结果,搜索用时 15 毫秒
91.
For the fermentative production of plant-specific flavanones (naringenin, pinocembrin) by Escherichia coli, a plasmid was constructed which carried an artificial biosynthetic gene cluster, including PAL encoding a phenylalanine ammonia-lyase from a yeast, ScCCL encoding a cinnamate/coumarate:CoA ligase from the actinomycete Streptomyces coelicolor A3(2), CHS encoding a chalcone synthase from a licorice plant and CHI encoding a chalcone isomerase from the Pueraria plant. The recombinant E. coli cells produced (2S)-naringenin from tyrosine and (2S)-pinocembrin from phenylalanine. When the two subunit genes of acetyl-CoA carboxylase from Corynebacterium glutamicum were expressed under the control of the T7 promoter and the ribosome-binding sequence in the recombinant E. coli cells, the flavanone yields were greatly increased, probably because enhanced expression of acetyl-CoA carboxylase increased a pool of malonyl-CoA that was available for flavanone synthesis. Under cultural conditions where E. coli at a cell density of 50 g/l was incubated in the presence of 3 mM tyrosine or phenylalanine, the yields of naringenin and pinocembrin reached about 60 mg/l. The fermentative production of flavanones in E. coli is the first step in the construction of a library of flavonoid compounds and un-natural flavonoids in bacteria.  相似文献   
92.
Dosing-time-dependent differences in lipopolysaccharide (LPS)-induced liver injury were examined in rats housed under a 12 h light:dark (LD) cycle. LPS (5 mg/kg) was intravenously injected into different groups of rats at 2, 14, or 20 h after light on (HALO). Elevations in serum liver enzymes after 14 HALO were significantly greater than those after 2 HALO. These parameters were lower in rats given LPS at 20 HALO, compared to 14 HALO. The number of polymorphonuclear cells (PMN) in the liver and the amount of hepatic myeloperoxidase activity, which reflects the number of PMN in liver tissues, was significantly greater in the 14 than in the 2 HALO group. In addition, hepatic interleukin-6 (IL-6) production in the 14 HALO group was enhanced compared to that in the 2 HALO trial. These results suggest that LPS-induced liver injury is greater during the early active than during the early resting period. Dosing-time-dependent variation in the accumulation of PMN in the liver and, potentially, subsequent IL-6 production in liver tissues might be involved in this phenomenon.  相似文献   
93.
The leftward flow in extraembryonic fluid is critical for the initial determination of the left-right axis of mouse embryos. It is unclear if this is a conserved mechanism among other vertebrates and how the directionality of the flow arises from the motion of cilia. In this paper, we show that rabbit and medakafish embryos also exhibit a leftward fluid flow in their ventral nodes. In all cases, primary monocilia present a clockwise rotational-like motion. Observations of defective ciliary dynamics in mutant mouse embryos support the idea that the posterior tilt of the cilia during rotational-like beating can explain the leftward fluid flow. Moreover, we show that this leftward flow may produce asymmetric distribution of exogenously introduced proteins, suggesting morphogen gradients as a subsequent mechanism of left-right axis determination. Finally, we experimentally and theoretically characterize under which conditions a morphogen gradient can arise from the flow.  相似文献   
94.
Plant hormone abscisic acid (ABA) plays important roles in dormancy and stress responses, but its binding sites have not yet been fully elucidated. In this report, we suggest the utility of biotin-labeled abscisic acid (bioABA) as a probe to investigate ABA-binding sites on the plasma membrane of barley aleurone protoplasts. BioABA was approximately 100 times less effective than ABA in inhibiting expression of gibberellin-inducible alpha-amylase and in inducing expression of a reporter gene fused to the dehydrin promoter. To ascertain that bioABA could bind to ABA-binding sites on the plasma membrane, we used fluorescence flow cytometry to measure the fluorescence intensity of aleurone protoplasts treated with a combination of bioABA and fluorescence-labeled streptavidin. Addition of bioABA increased the fluorescence of aleurone protoplasts in a concentration-dependent manner, but addition of non-active bioABA derivatives did not. Furthermore, the increase in fluorescence intensity observed upon addition of bioABA was eliminated by co-treatment with excess ABA, but it was not eliminated by co-treatment with other plant hormones. These results suggest that bioABA binds to ABA-binding sites, and that bioABA should be a valuable probe for investigating ABA-binding sites on the plasma membrane.  相似文献   
95.
Microtubule-associated protein 1A (MAP1A) is a high-molecular-weight protein that is comprised of a heavy chain and a light chain (LC2) and is widely distributed along the microtubules in both mature neurons and glial cells. To illustrate the interaction among the MAP1A heavy chain, light chain, and microtubule, we prepared DNA constructs with Myc-, EGFP-, or DsRed-tags for full-length MAP1A DNA expressing whole MAP1A protein, two domains of MAP1A heavy chain, and light chain. Distribution patterns of various MAP1A domains as well as their interactions with microtubules were monitored in a non-neuronal COS7 and a neuronal Neuro2A cells. Our data revealed that a complete MAP1A protein, which contains both heavy chain and LC2, could be colocalized with microtubule networks not only in Neuro2A cells but also in transfected COS7 cells. Filamentous structures failed to be visualized along microtubules in COS7 cells transfected with MAP1A heavy chain or LC2 alone. Whereas, after introducing MAP1A heavy chain with LC2 into COS7 cells, both heavy chain and LC2 could be colocalized with microtubules. From our functional analysis, both MAP1A and its LC2 could protect microtubules against the challenge of nacodazol. Data collected from yeast two-hybrid assays of various MAP1A domains confirmed that the interaction of LC2 and NH2-terminal of MAP1A heavy chain is important for microtubule binding. From our analysis of MAP1A functional domains, we suggest that interactions between MAP1A heavy chain and LC2 are critical for the binding of microtubules.  相似文献   
96.
Nodal cilia dynamics is a key factor for left/right axis determination in mouse embryos through the induction of a leftward fluid flow. So far it has not been clearly established how such dynamics is able to induce the asymmetric leftward flow within the node. Herein we propose that an asymmetric two-phase nonplanar beating cilia dynamics that involves the bending of the ciliar axoneme is responsible for the leftward fluid flow. We support our proposal with a host of hydrodynamic arguments, in silico experiments and in vivo video microscopy data in wild-type embryos and inv mutants. Our phenomenological modeling approach underscores how the asymmetry and speed of the flow depends on different relevant parameters. In addition, we discuss how the combination of internal and external mechanisms might cause the two-phase beating cilia dynamics.  相似文献   
97.
In the developing brain, the organization of the neuroepithelium is maintained by a critical balance between proliferation and cell-cell adhesion of neural progenitor cells. The molecular mechanisms that underlie this are still largely unknown. Here, through analysis of a conditional knockout mouse for the Kap3 gene, we show that post-Golgi transport of N-cadherin by the KIF3 molecular motor complex is crucial for maintaining this balance. N-cadherin and beta-catenin associate with the KIF3 complex by co-immunoprecipitation, and colocalize with KIF3 in cells. Furthermore, in KAP3-deficient cells, the subcellular localization of N-cadherin was disrupted. Taken together, these results suggest a potential tumour-suppressing activity for this molecular motor.  相似文献   
98.
Molecular motors and mechanisms of directional transport in neurons   总被引:1,自引:0,他引:1  
Intracellular transport is fundamental for neuronal morphogenesis, function and survival. Many proteins are selectively transported to either axons or dendrites. In addition, some specific mRNAs are transported to dendrites for local translation. Proteins of the kinesin superfamily participate in selective transport by using adaptor or scaffolding proteins to recognize and bind cargoes. The molecular components of RNA-transporting granules have been identified, and it is becoming clear how cargoes are directed to axons and dendrites by kinesin superfamily proteins. Here we discuss the molecular mechanisms of directional axonal and dendritic transport with specific emphasis on the role of motor proteins and their mechanisms of cargo recognition.  相似文献   
99.
100.
Myosin IXb, a member of the myosin superfamily, is a molecular motor that possesses a GTPase activating protein (GAP) for Rho. Through the yeast two-hybrid screening using the tail domain of myosin IXb as bait we found BIG1, a guanine nucleotide exchange factor for ADP-ribosylation factor (Arf1), as a potential binding partner for myosin IXb. The interaction between myosin IXb and BIG1 was demonstrated by co-immunoprecipitation of endogenous myosin IXb and BIG1 with anti-BIG1 antibodies in normal rat kidney cells. Using the isolated proteins, it was demonstrated that myosin IXb and BIG1 directly bind to each other. Various truncation mutants of the myosin IXb tail domain were produced, and it was revealed that the binding region of myosin IXb to BIG1 is the zinc finger/GAP domain. Interestingly, the GAP activity of myosin IXb was significantly inhibited by the addition of BIG1 with IC(50) of 0.06 microm. The RhoA binding to myosin IXb was inhibited by the addition of BIG1 with the concentration similar to the inhibition of the GAP activity. Likewise, RhoA inhibited the BIG1 binding of myosin IXb. These results suggest that BIG1 and RhoA compete with each other for the binding to myosin IXb, thus resulting in the inhibition of the GAP activity by BIG1. The present study identified BIG1, the Arf guanine nucleotide exchange factor, as a new binding partner for myosin IXb, which inhibited the GAP activity of myosin IXb. The findings raise a concept that the myosin transports the signaling molecule as a cargo that functions as a regulator for the myosin molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号