首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   30篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   7篇
  2016年   6篇
  2015年   11篇
  2014年   13篇
  2013年   34篇
  2012年   23篇
  2011年   32篇
  2010年   15篇
  2009年   12篇
  2008年   32篇
  2007年   31篇
  2006年   24篇
  2005年   27篇
  2004年   29篇
  2003年   31篇
  2002年   36篇
  2001年   5篇
  2000年   5篇
  1999年   12篇
  1998年   8篇
  1997年   14篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   6篇
  1984年   5篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1978年   5篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1970年   2篇
  1965年   1篇
排序方式: 共有495条查询结果,搜索用时 921 毫秒
111.
The reaction of c-cytochromes with iron hexacyanides is similar in mechanism to the interaction of cytochromes with their physiological oxidants and reductants in that the formation of complexes precedes electron transfer. Analysis of the kinetics of oxidation and reduction of a number of c-cytochromes by solving the simultaneous differential equations defining the mechanism is possible, and allows assignment of all six rate constants describing a minimum three-step mechanism [cyto(Fe(+3)) + Fe(+2) right harpoon over left harpoon cyto (Fe(+3)) - Fe(+2) right harpoon over left harpoon cyto(Fe(+2)) - Fe(+3) right harpoon over left harpoon cyto(Fe(+2)) + Fe(+3)]. We find that the usual steady-state approximations are not valid. Furthermore, the ratio of first-order rate constants for electron transfer was approximately 1.0, and no correlation was found between any of the six rate constants and the differences in oxidation-reduction potential of the iron-hexacyanides and different cytochromes c. However, it was found that the ratio of the rate constants for complex formation between ferricytochrome c and potassium ferrocyanide and ferrocytochrome c and potassium ferricyanide was proportional to the difference in oxidation-reduction potentials. Thus the minimum three-step mechanism given above accurately describes the observed kinetic data. However, this mechanism leads to a number of conceptual difficulties. Specifically, the mechanism requires that the collision complexes formed [cyto(Fe(+3)) - Fe(CN)(6) (-4) and cyto(Fe(+2)) - Fe(CN)(6) (-3)] have very different equilibrium constants, and further requires that formation of the collision complexes be accompanied by "chemistry" to make the intermediates isoenergetic. A more complex five-step mechanism which requires that the reactants [Fe(CN)(6) (-4) and ferricytochrome c or Fe(CN)(6) (-3) and ferrocytochrome c] form a collision complex followed by a first-order process before electron transfer, was found to yield results similar to those of the three-step mechanism. However, describing the formation of the collision complex in terms of a rapid equilibrium circumvents conceptual difficulties and leads to a physically reasonable mechanism. In this mechanism the reactants are in rapid equilibrium with the collision complexes and the rate constants for complex formation are controlled by diffusion and accessibility. The collision complexes then rearrange, possibly through conformational changes and/or solvent reorganization, to yield isoenergetic intermediates that can undergo rapid reversible electron transfer. The five-step mechanism can be described by the same rate constants obtained from the three-step mechanism with the appropriate adjustments to account for rapid equilibrium. This more complex analysis associates the oxidation-reduction potential of a particular cytochrome with the relative magnitude of the first-order conversion of the oxidant and reductant collision complexes to their respective intermediates. Thus the cytochromes c control their oxidation-reduction potential by chemical and/or structural alterations. This mechanism appears to be general in that it is consistent with the observed kinetics of 11 different cytochromes c from a wide variety of sources with a range of oxidation-reduction potentials.  相似文献   
112.
The organ distributions of tin and selenium, and their excretion into urine and feces, were determined in mice. There were four groups; (A) control, (B) Sn (5 μmol/kg/d) ip injection, (C) Se (5 μmol/kg/d) sc injection, and (D) Sn plus Se (5 μmol/kg/d, each). Animals received injections once a day for 12 consecutive days. The results were the following (1) Simultaneous injection of Sn and Se enhanced accumulation of both elements in the body, i.e., in group B, 14.1% of the total injected amount of Sn was excreted into urine and feces; in group C, 46.2% of total injected Se was excreted into urine and feces; in group D, 10.9% of total Sn and 37.5% of total Se were found in excreta. (2) Large amounts of Sn were found in bone, liver, spleen, and kidney in group B. When Se was administered jointly with Sn, the concentrations of Sn in bone and liver were suppressed, whereas those in spleen and pancreas were increased. (3) The effects of Se-injections at this dose on concentrations of Se in organs were small. (4) In plasma, chemical reduction of selenite by stannous chloride was not observed.  相似文献   
113.
Gas sparging directly into the culture-broth is not done in cell culture, except when the gas flow rate is very small, because much foaming occurs.During screening of defoaming methods, foam was observed to be broken up effectively when it made contact with a net fabricated from hydrophobic materials. Providing a highly efficient oxygen supply to suspension culture was tried using the new defoaming method. In a 5 1 reactor equipped with the foam-eliminating net fabricated with polysiloxane, oxygen was transferred at 21 mmole/l·h equivalent to an about forty-fold higher rate than in conventional surface aeration. This was equivalent to a consumption rate of 1×108 cells/ml, even at a low oxygen gas flow rate of 0.1 cm/s corresponding to a fourth of the gas flow rate when foam leaked through the net.Perfusion culture of rat ascites hepatoma cell JTC-1 was successfully carried out in the 51 scale culture system with the net and a hydrophobic membrane for cell filtration. The viable cell concentration reached 2.7×107 cells/ml after twenty-seven days, in spite of the nutrient-deficient condition of the lower medium exchange rate, that is, a working volume a day, and viability was maintained at more than 90%. In a 1.21 scale culture of mouse-mouse hybridoma cell STK-1, viable cell concentration reached 4×107 cells/ml. These results showed that oxygen transfer by gas sparging with defoaming was useful for high density suspension culture. A foam-breaking mechanism was proposed.Abbreviations Eagle's MEM Eagle's minimal essential medium - Dulbecco's modified Eagle MEM Dulbecco's modified Eagle minimal essential medium  相似文献   
114.
In a continuation of the structural studies on Japanese-radish peroxidase a. the products resulting from the action of pepsin on performic acid-oxidized apo-peroxidase a have been examined by ion-exchange chromatography on a Dowex 50W-X2 column, followed by gelfiltration chromatography on a Sephadex G-25 column and by high voltage paper electrophoresis. Seven peptides have been isolated in purified forms in yields of 6 to 39 per cent, and their amino acid compositions have been determined.  相似文献   
115.
An assessment of the daily activity rhythm of wild Japanese monkeys was tried both from the calculation of the proportion that each activity occupied in the total activities and the “nomadograph,” representing temporary change in the pace of the daily movement. Seasonal and day-to-day changes are recognized in the daily activity rhythm of the troop of wild Japanese monkeys. It seems that seasonal change in the daily activity rhythm corresponds to the seasonal fluctuation of food supply and atmospheric temperature. From autumn to early winter, when much food is available, a clear-cut pattern of activity emerges; namely, three intensive feeding periods are recognized in a day. Moreover, day-to-day variation in the activity rhythm is fairly small and the activity pattern thus becomes standardized. In winter, when least food is available, activity of monkeys drops to the lowest level of the year. Day-to-day variation in the activity rhythm is great. Two to four intensive feeding periods in a day are recognized. In early spring and summer, when food supply is rather scarce, there exist two to three intensive feeding periods in a day. During the heat of the day in summer, activity of monkeys is conspicuously low.  相似文献   
116.
Bacterial flagellin is critical to mediate NLRC4 inflammasome-dependent caspase-1 activation. However, Shigella flexneri, a nonflagellated bacterium, and a flagellin (fliC) knockout strain of Pseudomonas aeruginosa are known to activate NLRC4 in bone marrow-derived macrophages. Furthermore, the flagellin-deficient fliC strain of P. aeruginosa was used in a mouse model of peritonitis to show the requirement of NLRC4. In a model of pulmonary P. aeruginosa infection, flagellin was shown to be essential for the induction of NLRC4-dependent caspase-1 activation. Moreover, in all P. aeruginosa studies, IL-1β production was attenuated in NLRC4(-/-) mice; however, the role of IL-1β in NLRC4-mediated innate immunity in the lungs against a nonflagellated bacterium was not explored. In this article, we report that NLRC4 is important for host survival and bacterial clearance, as well as neutrophil-mediated inflammation in the lungs following Klebsiella pneumoniae infection. NLRC4 is essential for K. pneumoniae-induced production of IL-1β, IL-17A, and neutrophil chemoattractants (keratinocyte cell-derived chemokines, MIP-2, and LPS-induced CXC chemokines) in the lungs. NLRC4 signaling in hematopoietic cells contributes to K. pneumoniae-induced lung inflammation. Furthermore, exogenous IL-1β, but not IL-18 or IL-17A, partially rescued survival, neutrophil accumulation, and cytokine/chemokine expression in the lungs of NLRC4(-/-) mice following infectious challenge. Furthermore, IL-1R1(-/-) mice displayed a decrease in neutrophilic inflammation in the lungs postinfection. Taken together, these findings provide novel insights into the role of NLRC4 in host defense against K. pneumoniae infection.  相似文献   
117.
118.
Hepatic stellate cells (HSC), the key fibrogenic cells of the liver, transdifferentiate into myofibroblasts upon phagocytosis of apoptotic hepatocytes. Galectin-3, a β-galactoside-binding lectin, is a regulator of the phagocytic process. In this study, our aim was to study the mechanism by which extracellular galectin-3 modulates HSC phagocytosis and activation. The role of galectin-3 in engulfment was evaluated by phagocytosis and integrin binding assays in primary HSC. Galectin-3 expression was studied by real-time PCR and enzyme-linked immunosorbent assay, and in vivo studies were done in wild-type and galectin-3(-/-) mice. We found that HSC from galectin-3(-/-) mice displayed decreased phagocytic activity, expression of transforming growth factor-β1, and procollagen α1(I). Recombinant galectin-3 reversed this defect, suggesting that extracellular galectin-3 is required for HSC activation. Galectin-3 facilitated the α(v)β(3) heterodimer-dependent binding, indicating that galectin-3 modulates HSC phagocytosis via cross-linking this integrin and enhancing the tethering of apoptotic cells. Blocking integrin α(v)β(3) resulted in decreased phagocytosis. Galectin-3 expression and release were induced in active HSC engulfing apoptotic cells, and this was mediated by the nuclear factor-κB signaling. The upregulation of galectin-3 in active HSC was further confirmed in vivo in bile duct-ligated (BDL) rats. Galectin-3(-/-) mice displayed significantly decreased fibrosis, with reduced expression of α-smooth muscle actin and procollagen α1(I) following BDL. In summary, extracellular galectin-3 plays a key role in liver fibrosis by mediating HSC phagocytosis, activation, and subsequent autocrine and paracrine signaling by a feedforward mechanism.  相似文献   
119.
Quality control in the endoplasmic reticulum ensures that only properly folded proteins are retained in the cell through mechanisms that recognize and discard misfolded or unassembled proteins in a process called endoplasmic reticulum-associated degradation (ERAD). We previously cloned EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and showed that it accelerates ERAD of misfolded glycoproteins. We now cloned mouse EDEM3, a soluble homolog of EDEM. EDEM3 consists of 931 amino acids and has all the signature motifs of Class I alpha-mannosidases (glycosyl hydrolase family 47) in its N-terminal domain and a protease-associated motif in its C-terminal region. EDEM3 accelerates glycoprotein ERAD in transfected HEK293 cells, as shown by increased degradation of misfolded alpha1-antitrypsin variant (null (Hong Kong)) and of TCRalpha. Overexpression of EDEM3 also greatly stimulates mannose trimming not only from misfolded alpha1-AT null (Hong Kong) but also from total glycoproteins, in contrast to EDEM, which has no apparent alpha1,2-mannosidase activity. Furthermore, overexpression of the E147Q EDEM3 mutant, which has the mutation in one of the conserved acidic residues essential for enzyme activity of alpha1,2-mannosidases, abolishes the stimulation of mannose trimming and greatly decreases the stimulation of ERAD by EDEM3. These results show that EDEM3 has alpha1,2-mannosidase activity in vivo, suggesting that the mechanism whereby EDEM3 accelerates glycoprotein ERAD is different from that of EDEM.  相似文献   
120.
A rare hereditary disorder, Fanconi anemia (FA), is caused by mutations in an array of genes, which interact in a common FA pathway/network. These genes encode components of the FA "core" complex, a key factor FancD2, the familial breast cancer suppressor BRCA2/FancD1, and Brip1/FancJ helicase. Although BRCA2 is known to play a pivotal role in homologous recombination repair by regulating Rad51 recombinase, the precise functional relationship between BRCA2 and the other FA genes is unclear. Here we show that BRCA2-dependent chromatin loading of Rad51 after mitomycin C treatment was not compromised by disruption of FANCC or FANCD2. Rad51 and FancD2 form colocalizing subnuclear foci independently of each other. Furthermore, we created a conditional BRCA2 truncating mutation lacking the C-terminal conserved domain (CTD) (brca2DeltaCTD), and disrupted the FANCC gene in this background. The fancc/brca2DeltaCTD double mutant revealed an epistatic relationship between FANCC and BRCA2 CTD in terms of x-ray sensitivity. In contrast, levels of cisplatin sensitivity and mitomycin C-induced chromosomal aberrations were increased in fancc/brca2DeltaCTD cells relative to either single mutant. Taken together, these results indicate that FA proteins work together with BRCA2/Rad51-mediated homologous recombination in double strand break repair, whereas the FA pathway plays a role that is independent of the CTD of BRCA2 in interstrand cross-link repair. These results provide insights into the functional interplay between the classical FA pathway and BRCA2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号