首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   8篇
  257篇
  2022年   2篇
  2016年   6篇
  2015年   4篇
  2014年   2篇
  2013年   9篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   12篇
  2003年   16篇
  2002年   12篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   6篇
  1989年   1篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1980年   7篇
  1979年   5篇
  1978年   3篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
  1974年   6篇
  1973年   6篇
  1972年   4篇
  1971年   6篇
  1970年   3篇
  1969年   1篇
  1968年   4篇
  1967年   3篇
  1965年   1篇
  1959年   1篇
排序方式: 共有257条查询结果,搜索用时 23 毫秒
91.
Plants are sessile in nature, and need to detect and respond to many environmental cues in order to regulate their growth and orientation. Indeed, plants sense numerous environmental cues and respond via appropriate tropisms, and it is widely accepted that auxin plays an important role in these responses. Recent analyses using Arabidopsis have emphasized the importance of polar auxin transport and differential auxin responses to gravitropism. Even so, the involvement of auxin in hydrotropism remains unclear. To clarify whether or not auxin is involved in the hydrotropic response, Arabidopsis seedlings were treated with inhibitors of auxin influx (3-chloro-4-hydroxyphenylacetic acid), efflux (1-naphthylphthalemic acid and 2,3,5-triiodobenzoic acid), and response (p-chlorophenoxyisobutylacetic acid), and their effects were examined on both hydrotropic and gravitropic responses. In agreement with previous reports, gravitropism was inhibited by all the chemicals tested. By contrast, only an inhibitor of the auxin response (p-chlorophenoxyisobutylacetic acid) reduced hydrotropism, whereas inhibitors for influx or efflux of auxin had no effect. These results suggest that auxin response, apart from its polar transport, plays a definite role in hydrotropic response, and will evoke a new concept for the auxin-mediated regulation of tropisms.  相似文献   
92.
We investigated the characteristics of the sulfur-oxidizing symbiont hosted in the gills of Codakia orbicularis, a bivalve living in shallow marine tropical environments. Special attention was paid to describing the heterogeneity of the population by using single-cell approaches including flow cytometry (FCM) and different microscopic techniques and by analyzing a cell size fractionation experiment. Up to seven different subpopulations were distinguished by FCM based on nucleic acid content and light side scattering of the cells. The cell size analysis of symbionts showed that the symbiotic population was very heterogeneous in size, i.e., ranging from 0.5 to 5 mum in length, with variable amounts of intracellular sulfur. The side-scatter signal analyzed by FCM, which is often taken as a proxy of cell size, was greatly influenced by the sulfur content of the symbionts. FCM revealed an important heterogeneity in the relative nucleic acid content among the subclasses. The larger cells contained exceptionally high levels of nucleic acids, suggesting that these cells contained multiple copies of their genome, i.e., ranging from one copy for the smaller cells to more than four copies for the larger cells. The proportion of respiring symbionts (5-cyano-2,3-ditolyl-terazolium chloride positive) in the bacteriocytes of Codakia revealed that around 80% of the symbionts hosted by Codakia maintain respiratory activity throughout the year. These data allowed us to gain insight into the functioning of the symbionts within the host and to propose some hypotheses on how the growth of the symbionts is controlled by the host.  相似文献   
93.
The gross anatomy of the mastication system of the giant anteater (Myrmecophaga tridactyla) was examined by means of three-dimensional image analysis. The anteater rotates the mandibles medially and laterally to control its tongue when it is elongated and to house it when it is relaxed. Three-dimensional CT image analysis demonstrated that the shape and size of the oral cavity changes drastically when the mandibles are rotated. The oral cavity expands bilaterally when the dorsal part of the mandibles bend medially. Macroscopic observations and muscle-weight data supported the observation that the superficial temporal and medial pterygoid muscles act as the main medial and lateral rotators of the mandible, respectively. The low height of the mandibular ramus and the incomplete zygomatic arch in this species represent adaptations for the rotational movement of the mandibles, since they both contribute to the medially oriented transmission of force from the temporal muscles and to preventing collision between the mandibles and the cranium during the rotational movement.  相似文献   
94.
Plant roots undergo tropic growth in response to environmental cues, and each tropic response is affected by several environmental stimuli. Even its importance, molecular regulation of hydrotropism has not been largely uncovered. Tropic responses including hydrotropism were impacted by other environmental signal. We found that hydrotropism was reduced in dark-grown seedling. Moreover, we found that the expression of MIZ1, an essential gene for hydrotropism, was regulated by light signal. From our genetic analysis, phytochrome A (phyA)-, phyB- and HY5-mediated blue-light signalling play curial roles in light-mediated induction of MIZ1 and hydrotropism. In addition, we found that abscisic acid (ABA) also induced MIZ1 expression. ABA treatment could recover weak hydrotropism and MIZ1 expression level of hy5, and ABA synthesis inhibitor, abamineSG, further reduced hydrotropic curvature of hy5. In contrast, ABA treatment did not affect ahydrotropic phenotype of miz1. These results suggest that ABA signalling regulates MIZ1 expression independently from light signalling. Our results demonstrate that environmental signals, such as light and stresses mediated by ABA signalling, are integrated into MIZ1 expression and thus regulate hydrotropism. These machineries will allow plants to acquire sufficient amounts of water.  相似文献   
95.
SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1 (SHPS-1 or SIRPα/BIT) is an immunoglobulin (Ig) superfamily transmembrane receptor and a member of the signal regulatory protein (SIRP) family involved in cell-cell interaction. SHPS-1 binds to its ligand CD47 to relay an inhibitory signal for cellular responses, whereas SIRPβ, an activating member of the same family, does not bind to CD47 despite sharing a highly homologous ligand-binding domain with SHPS-1. To address the molecular basis for specific CD47 recognition by SHPS-1, we present the crystal structure of the ligand-binding domain of murine SHPS-1 (mSHPS-1). Folding topology revealed that mSHPS-1 adopts an I2-set Ig fold, but its overall structure resembles IgV domains of antigen receptors, although it has an extended loop structure (C′E loop), which forms a dimer interface in the crystal. Site-directed mutagenesis studies of mSHPS-1 identified critical residues for CD47 binding including sites in the C′E loop and regions corresponding to complementarity-determining regions of antigen receptors. The structural and functional features of mSHPS-1 are consistent with the human SHPS-1 structure except that human SHPS-1 has an additional β-strand D. These results suggest that the variable complementarity-determining region-like loop structures in the binding surface of SHPS-1 are generally required for ligand recognition in a manner similar to that of antigen receptors, which may explain the diverse ligand-binding specificities of SIRP family receptors.  相似文献   
96.
Cucumber (Cucumis sativus L.) seedlings form a specialized protuberance, the peg, on the transition zone between the hypocotyl and the root. When cucumber seeds germinate in a horizontal position, the seedlings develop a peg on the lower side of the transition zone. To verify the role of auxin action in peg formation, we examined the effect of the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB), on peg formation and mRNA accumulation of auxin-regulated genes. Application of PCIB to cucumber seedlings inhibited peg formation. The application of indole-3-acetic acid (IAA) competed with PCIB and induced peg formation. Furthermore, application of PCIB decreased auxin-inducible CsIAA1 mRNA and increased auxin-repressible CsGRP1 mRNA in the lower side of the transition zone. The differential accumulation of CsIAA1 and CsGRP1 mRNAs in the transition zone of cucumber seedlings grown in a horizontal position was smaller in the PCIB-treated seedlings. These results demonstrate that endogenous auxin redistributes and induces the differential expression of auxin-regulated genes, and ultimately results in the suppression or induction of peg formation in the gravistimulated transition zone of cucumber seedlings.  相似文献   
97.
When the upper part of the main shoot of the Japanese morning glory (Pharbitis nil or Ipomoea nil) is bent down, the axillary bud situated on the uppermost node of the bending region is released from apical dominance and elongates. Here, we demonstrate that this release of axillary buds from apical dominance is gravity regulated. We utilized two agravitropic mutants of morning glory defective in gravisensing cell differentiation, weeping (we) and weeping2 (we2). Bending the main shoots of either we or we2 plants resulted in minimal elongation of their axillary buds. This aberration was genetically linked to the agravitropism phenotype of the mutants, which implied that shoot bending-induced release from apical dominance required gravisensing cells. Previous studies have shown that basipetal translocation of auxin from the apical bud inhibits axillary bud growth, whereas cytokinin promotes axillary bud outgrowth. We therefore compared the roles of auxin and cytokinin in bending- or decapitation-induced axillary bud growth. In the wild-type and we plants, decapitation increased cytokinin levels and reduced auxin response. In contrast, shoot bending did not cause significant changes in either cytokinin level or auxin response, suggesting that the mechanisms underlying gravity- and decapitation-regulated release from apical dominance are distinct and unique.  相似文献   
98.
The shoots of a Japanese strain of morning glory ( Pharbitis nil  ) called 'Shidare-asagao' display agravitropic and weeping growth. It has been shown that this shoot agravitropism may be due to the defective differentiation of endodermal cells that contain statoliths. Roots of the weeping morning glory show normal responsiveness to gravity and the shoots are positively phototropic. Shoots of the morning glory cultivar Violet used as a wild type exhibited distinct circumnutation with circular movements that increase as the plants grow. In weeping morning glory, however, nutation was limited to slight back and forth or side to side movements. To determine whether endodermal cells participate in circumnutation through a function that is independent of their role in gravitropism, the nutational movements of various gravitropic mutants of Arabidopsis thaliana were compared. The inflorescences of wild-type Arabidopsis showed relatively large circular movements. Inflorescences of the pgm-1 mutant, which is defective in starch synthesis, showed reduced nutation. Even more seriously affected were the sgr1-1 / scr-3 and sgr7-1 / shr-2 mutants, which are defective in endodermal cell differentiation, and the auxin-resistant axr2-1 mutant showed no significant nutational movements at all. 1- N -naphthylphthalamic acid (NPA) could inhibit Violet circumnutation, supporting the notion that auxin participates in circumnutation. Thus, the gravitropic response is an essential component in plant shoot circumnutation. Endodermal cells are involved in such circumnutation possibly because of their role in inducing the gravitropic response.  相似文献   
99.
1. The galactosylhydroxylysylglucosyltransferase (GGT) specific to collagen is located in the RER (rough endoplasmic reticulum), SER (smooth endoplasmic reticulum) and Golgi apparatus for the chick embryo liver. 2. The UDP-glucose collagen glucosyltransferase activities in chick embryo liver were solubilized by Nonidet P-40. 3. The mechanism of collagen glucosyltransferase reaction was studied with enzyme preparation of Golgi apparatus CF2, smooth endoplasmic reticulum CF4 and rough endoplasmic reticulum CF8. 4. For the three fractions, data obtained in experiments were consistent with a sequential ordered mechanism in which the substrates are bound to the enzyme in the following order: Mn2+, collagen and UDP-glucose substrate, with different values for Km and Vmax.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号