首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2329篇
  免费   141篇
  2021年   18篇
  2020年   14篇
  2019年   16篇
  2018年   21篇
  2017年   19篇
  2016年   42篇
  2015年   71篇
  2014年   63篇
  2013年   87篇
  2012年   106篇
  2011年   105篇
  2010年   69篇
  2009年   60篇
  2008年   114篇
  2007年   125篇
  2006年   134篇
  2005年   132篇
  2004年   123篇
  2003年   96篇
  2002年   91篇
  2001年   66篇
  2000年   64篇
  1999年   60篇
  1998年   23篇
  1997年   25篇
  1996年   15篇
  1995年   26篇
  1994年   32篇
  1993年   25篇
  1992年   53篇
  1991年   57篇
  1990年   44篇
  1989年   43篇
  1988年   38篇
  1987年   35篇
  1986年   26篇
  1985年   22篇
  1984年   21篇
  1983年   20篇
  1982年   22篇
  1981年   13篇
  1980年   17篇
  1979年   17篇
  1978年   21篇
  1977年   16篇
  1976年   14篇
  1974年   22篇
  1973年   20篇
  1972年   18篇
  1968年   12篇
排序方式: 共有2470条查询结果,搜索用时 31 毫秒
131.
132.
Engineered bacterial sensors have potential applications in human health monitoring, environmental chemical detection, and materials biosynthesis. While such bacterial devices have long been engineered to differentiate between combinations of inputs, their potential to process signal timing and duration has been overlooked. In this work, we present a two‐input temporal logic gate that can sense and record the order of the inputs, the timing between inputs, and the duration of input pulses. Our temporal logic gate design relies on unidirectional DNA recombination mediated by bacteriophage integrases to detect and encode sequences of input events. For an E. coli strain engineered to contain our temporal logic gate, we compare predictions of Markov model simulations with laboratory measurements of final population distributions for both step and pulse inputs. Although single cells were engineered to have digital outputs, stochastic noise created heterogeneous single‐cell responses that translated into analog population responses. Furthermore, when single‐cell genetic states were aggregated into population‐level distributions, these distributions contained unique information not encoded in individual cells. Thus, final differentiated sub‐populations could be used to deduce order, timing, and duration of transient chemical events.  相似文献   
133.
In order to produce insulin-secreting cells with a high value of glucose-stimulated insulin secretion (GSIS) from mouse embryonic stem cells, we have developed an optimized 5-stage protocol by referring to culture conditions so far reported elsewhere. This protocol is characterized by 4 points: (1) use of an activin-free medium in the first stage, (2) use of gelatin/fibronectin coated culture dishes in 1–4 stages throughout, (3) removal of undifferentiated cells by cell sorter at the end of 4th stage, and (4) sedimental culture in the 5th stage. GSIS value of the produced cells reached 2.4, that was at a higher rank of those so far reported. The produced cells were transplanted in diabetes model mice but no remedy effect was observed. Then transplantation was conducted in pre-diabetes model mice, in which GSIS was impaired without affecting insulin producing function. The transplantation of 5 × 106 cells resulted in a marked improvement of glucose tolerance within 20 days. This effect decreased but was still observed at 120 days post-transplantation. This demonstrates the feasibility of the novel optimized protocol.  相似文献   
134.
Kuzuhara A  Fujiwara N  Hori T 《Biopolymers》2007,87(2-3):134-140
To investigate the internal structure changes in virgin black human hair keratin fibers due to aging, the structure of cross-sections at various depths of virgin black human hair (sections of new growth hair: 2 mm from the scalp) from a group of eight Japanese females in their twenties and another group of eight Japanese females in their fifties were analyzed using Raman spectroscopy. For the first time, we have succeeded in recording the Raman spectra of virgin black human hair, which had been impossible due to high melanin granule content. The key points of this method are to cross-section hair samples to a thickness of 1.50-microm, to select points at various depths of the cortex with the fewest possible melanin granules, and to optimize laser power, cross slit width as well as total acquisition time. The reproducibility of the Raman bands, namely the alpha-helix (alpha) content, the beta-sheet and/or random coil (beta/R) content, the disulfide (--SS--) content, and random coil content of two adjoining cross-sections of a single hair keratin fiber was clearly good. The --SS-- content of virgin black human hair from the Japanese females in their fifties for the cortex region decreased compared with that of the Japanese females in their twenties. On the other hand, the beta/R and alpha contents of the cortex region did not change.  相似文献   
135.
The ganglioside GM1-binding peptide, p3, with a sequence of VWRLLAPPFSNRLLP, displayed a clear structural alteration depending on the presence or absence of GM1 micelles. The three-dimensional structures of the p3 peptide in the free and GM1 bound states were analyzed using two-dimensional NMR spectroscopic experiments with distance-restrained simulated annealing calculations. The NMR experiments for the p3 peptide alone indicated that the peptide has two conformers derived from the exchange of cis and trans forms at Pro(7)-Pro(8). Further study with theoretical modeling revealed that the p3 peptide has a curb conformation without regular secondary structure. On the other hand, the NMR studies for the p3 peptide with the GM1 micelles elucidated a trans conformer and gave a structure stabilized by hydrophobic interactions of beta- and helical turns. Based on these structural investigations, tryptophan, a core residue of the hydrophobic cluster, might be an essential residue for the recognition of the GM1 saccharides. The dynamic transition of the p3 peptide may play an important role in the function of GM1 as a multiple receptor as in the traditional pathway of the infection by cholera toxin.  相似文献   
136.
Medaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain-hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand-receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8-Fgfr1 while maintaining the ligand-receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function.  相似文献   
137.
Monoclonal antibodies (mAbs) specific for the human macrophage galactose-type calcium-type lectin (MGL) were established. The recombinant extracellular domain of MGL was used to immunize a mouse, and 10 hybridoma clones were obtained. Binding of recombinant MGL to asialo-bovine submaxillary mucin was shown to be blocked by mAbs MLD-1, 4 and 6. Immunoprecipitation of MGL from lysates of COS-1 cells transfected with MGL cDNA (form 6A) was achieved with mAbs MLD-1, 4, 7, 8 and 16. Chimeric recombinant proteins between human MGL and mouse MGL1 were used to determine the location of the epitopes for these mAbs. mAbs MLD-8, 13, 15 and 16 interacted with the amino terminal side of the conserved WVDGTD sequence immediately upstream of QPD, whereas mAbs MLD-7, 12 and 17 interacted with the other side. mAbs MLD-1, 4, and 6 apparently required both sides of this boundary. mAbs MLD-15 and 16 were shown to recognize the protein products of alternatively spliced mRNA 6A/8A and 6C/8A, having deletions at the boundary of exons 7 and 8, in addition to full length and other spliced forms of MGL (6A, 6B and 6C), whereas the other mAbs bound only full length and forms 6A, 6B and 6C.  相似文献   
138.
The diatom Eucampia zodiacus Ehrenberg is one of the harmful diatom species which indirectly cause bleachings of Nori (Porphyra thalli) in aquaculture through competitive utilizing of nutrients (especially nitrogen) and resultant nutrient depletion in water columns during the bloom events. The seasonal changes in environmental factors, cell density and cell size of E. zodiacus were investigated for 4 years (April 2002–December 2005) to understand the population ecology of this diatom in Harima-Nada, the eastern part of the Seto Inland Sea, Japan. Vegetative cells of E. zodiacus were usually detected year-round. Total cell densities of E. zodiacus annually peaked from mid-February to early April, and high cell densities were observed in the whole water columns during the bloom-period. Nutrient concentrations decreased with the increase of cell density of E. zodiacus, and low nutrients concentrations continued throughout the E. zodiacus bloom-period. The average cell size (length of apical axis) of E. zodiacus populations ranged from 10.8 μm to 81.2 μm, and the restoration of cell size occurred once in autumn every year just after reaching the minimum cell size. In addition, its great seasonal regularity was confirmed by the decrease and restoration of its cell size through 4-year study period. Temperature and nutrients were suitable in autumn for the growth of E. zodiacus, its blooms never occur in that season. These results strongly suggest that E. zodiacus did not have a resting stage, and it spends autumn for size restoration and starts to bloom thereafter in Harima-Nada in winter and spring, causing fishery damage to Nori aquaculture by resulting nutrient deprivation.  相似文献   
139.
Autophagy, a system for the bulk degradation of intracellular components, is essential for homeostasis and the healthy physiology and development of cells and tissues. Its deregulation is associated with human disease. Thus, methods to modulate autophagic activity are critical for analysis of its role in mammalian cells and tissues. Here we report a method to inhibit autophagy using a mutant variant of the protein ATG7, a ubiquitin E1-like enzyme essential for autophagosome formation. During autophagy, ATG7 activates the conjugation of LC3 (ATG8) with phosphatidylethanolamine (PE) and ATG12 with ATG5. Human ATG7 interactions with LC3 or ATG12 require a thioester bond involving the ATG7 cysteine residue at position 572. We generated TetOff cells expressing mutant ATG7 protein carrying a serine substitution of this critical cysteine residue (ATG7C572S). Because ATG7C572S forms stable intermediate complexes with LC3 or ATG12, its expression resulted in a strong blockage of the ATG-conjugation system and suppression of autophagosome formation. Consequently, ATG7C572S mutant protein can be used as an inhibitor of autophagy.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号