首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   52篇
  852篇
  2023年   6篇
  2022年   5篇
  2021年   8篇
  2020年   10篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   17篇
  2015年   30篇
  2014年   31篇
  2013年   38篇
  2012年   56篇
  2011年   46篇
  2010年   33篇
  2009年   30篇
  2008年   49篇
  2007年   54篇
  2006年   60篇
  2005年   59篇
  2004年   44篇
  2003年   34篇
  2002年   33篇
  2001年   9篇
  2000年   7篇
  1999年   10篇
  1998年   9篇
  1997年   9篇
  1995年   9篇
  1994年   13篇
  1993年   13篇
  1992年   14篇
  1991年   9篇
  1990年   7篇
  1989年   12篇
  1988年   10篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   7篇
  1976年   2篇
  1974年   2篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有852条查询结果,搜索用时 15 毫秒
101.
Carnosine dipeptidase II (CN2/CNDP2) is an M20 family metallopeptidase that hydrolyses various dipeptides including β‐alanyl‐l ‐histidine (carnosine). Crystallographic analysis showed that CN2 monomer is composed of one catalytic and one dimerization domains, and likely to form homodimer. In this crystal, H228 residue of the dimerization domain interacts with the substrate analogue bestatin on the active site of the dimer counterpart, indicating that H228 is involved in enzymatic reaction. In the present study, the role of intradimer interaction of CN2 in its catalytic activity was investigated using electrospray‐ionization time‐of‐flight mass spectrometry (ESI‐TOF MS). First, a dimer interface mutant I319K was prepared and shown to be present as a folded monomer in solution as examined by using ESI‐TOF MS. Since the mutant was inactive, it was suggested that dimer formation is essential to its enzymatic activity. Next, we prepared H228A and D132A mutant proteins with different N‐terminal extended sequences, which enabled us to monitor dimer exchange reaction by ESI‐TOF MS. The D132A mutant is a metal ligand mutant and also inactive. But the activity was partially recovered time‐dependently when H228A and D132A mutant proteins were incubated together. In parallel, H228A/D132A heterodimer was formed as detected by ESI‐TOF MS, indicating that interaction of a catalytic center with H228 residue of the other subunit is essential to the enzymatic reaction. These results provide evidence showing that intradimer interaction of H228 with the reaction center of the dimer counterpart is essential to the enzymatic activity of CN2.  相似文献   
102.
103.
104.
AimsNeutrophils have been found increasingly in the lungs of patients with severe asthma; however, it is unclear whether the neutrophils contribute to the induction of the airway obstruction. We determined using a murine model whether neutrophils are involved in the late asthmatic response (LAR), and analyzed mechanisms underlying the antigen-induced airway neutrophilia.Main methodsBALB/c mice sensitized by ovalbumin (OVA) + Al(OH)3 were challenged 4 times by intratracheal administration of OVA. Airway mechanics were measured as specific airway resistance.Key findingsInduction of the LAR after the 4th challenge coincided with airway neutrophilia. In contrast, eosinophil infiltration was established prior to the 4th challenge. A treatment with an anti-Gr-1 monoclonal antibody (mAb) before the 4th challenge selectively suppressed increases in the neutrophil number and myeloperoxidase (MPO) level in bronchoalveolar lavage fluid (BALF), and attenuated the magnitude of LAR by 60–70%. Selective suppression of eosinophilia by anti-IL-5 mAb had little effect on the LAR. The increases in neutrophil number and MPO level were partially inhibited by an anti-CD4 mAb treatment. The CD4+ cell depletion also significantly inhibited increases in neutrophil chemoattractants, IL-17A, keratinocyte-derived chemokine (KC) and macrophage inflammatory protein (MIP)-2 in BALF. However, blockade of FcγRII/III failed to suppress the neutrophilia.SignificanceThese data suggest that neutrophils are key inducers of the LAR, and that the antigen-induced neutrophilia is partially dependent on activated CD4+ cells that are involved in the production of IL-17A, KC and MIP-2.  相似文献   
105.
Animals are assumed to obtain/conserve energy effectively to maximise their fitness, which manifests itself in a variety of behavioral strategies. For marine animals, however, these behavioral strategies are generally unknown due to the lack of high-resolution monitoring techniques in marine habitats. As large marine herbivores, immature green turtles do not need to allocate energy to reproduction but are at risk of shark predation, although it is a rare occurrence. They are therefore assumed to select/use feeding and resting sites that maximise their fitness in terms of somatic growth, while avoiding predation. We investigated fine-scale behavioral patterns (feeding, resting and other behaviors), microhabitat use and time spent on each behavior for eight immature green turtles using data loggers including: depth, global positioning system, head acceleration, speed and video sensors. Immature green turtles at Iriomote Island, Japan, spent an average of 4.8 h feeding on seagrass each day, with two peaks, between 5∶00 and 9∶00, and between 17∶00 and 20∶00. This feeding pattern appeared to be restricted by gut capacity, and thus maximised energy acquisition. Meanwhile, most of the remaining time was spent resting at locations close to feeding grounds, which allowed turtles to conserve energy spent travelling and reduced the duration of periods exposed to predation. These behavioral patterns and time allocations allow immature green turtles to effectively obtain/conserve energy for growth, thus maximising their fitness.  相似文献   
106.
BackgroundChagas disease, caused by the parasite Trypanosoma cruzi, is a neglected tropical disease that causes severe human health problems. To develop a new chemotherapeutic agent for the treatment of Chagas disease, we predicted a pharmacophore model for T. cruzi dihydroorotate dehydrogenase (TcDHODH) by fragment molecular orbital (FMO) calculation for orotate, oxonate, and 43 orotate derivatives.Conclusions/SignificanceFMO-based interaction energy analyses revealed a pharmacophore model for TcDHODH inhibitor. Hydrogen bond acceptor pharmacophores correspond to Lys43 and Lys214, hydrogen bond donor and acceptor pharmacophores correspond to Asn67 and Asn194, and the aromatic ring pharmacophore corresponds to FMN, which shows important characteristics of compounds that inhibit TcDHODH. In addition, the Lys214 residue is not conserved between TcDHODH and human DHODH. Our analysis suggests that these orotate derivatives should preferentially bind to TcDHODH, increasing their selectivity. Our results obtained by pharmacophore modeling provides insight into the structural requirements for the design of TcDHODH inhibitors and their development as new anti-Chagas drugs.  相似文献   
107.
Cleavage patterns of mitochondrial DNA (mtDNA) by restriction endonuclease analysis were examined in four Japanese Black cows, three Japanese Shorthorn cows, and six Holstein cows. Seventeen restriction enzymes which recognize six base pairs and two restriction enzymes which recognize four base pairs were used in this study. Polymorphism was observed with three restriction enzymes, HindIII, TaqI, and MspI, and was detected within the breeds. Nucleotide substitution was determined in the HindIII polymorphic site by DNA cloning and sequencing; this is C----T at position 10126 of the URF-3 region. Furthermore, the MspI and TaqI polymorphic sites were located on the physical map.  相似文献   
108.
109.
Two cDNA clones, AATCDPK1 and cATCDPK2, encoding Ca2+-dependent, calmodulin-independent protein kinases (CDPK) were cloned from Arabidopsis thaliana and their nucleotide sequences were determined. Northern blot analysis indicated that the mRNAs corresponding to the ATCDPK1 and ATCDPK2 genes are rapidly induced by drought and high-salt stress but not by low-temperature stress or heat stress. Treatment of Arabidopsis plants with exogenous abscisic acid (ABA) had no effect on the induction of ATCDPK1 or ATCDPK2. These findings suggest that a change in the osmotic potential of the environment can serve as a trigger for the induction of ATCDPK1 and ATCDPK2. Putative proteins encoded by ATCDPK1 and ATCDPK2 which contain open reading frames of 1479 and 1488 bp, respectively, are designated ATCDPK1 and ATCDPK2 and show 52% identity at the amino acid sequence level. ATCDPK1 and ATCDPK2 exhibit significant similarity to a soybean CDPK (51 % and 73%, respectively). Both proteins contain a catalytic domain that is typical of serine/threonine protein kinases and a regulatory domain that is homologous to the Ca2+-binding sites of calmodulin. Genomic Southern blot analysis suggests the existence of a few additional genes that are related to ATCDPK1 and ATCDPK2 in the Arabidopsis genome. The ATCDPK2 protein expressed in Escherichia coli was found to phosphorylate casein and myelin basic protein preferentially, relative to a histone substrate, and required Ca2+ for activation.  相似文献   
110.
Gravity change affects many immunological systems. We investigated the effects of hypergravity (2G) on murine thymic cells. Exposure of mice to 2G for three days reduced the frequency of CD4+CD8+ thymocytes (DP) and mature medullary thymic epithelial cells (mTECs), accompanied by an increment of keratin-5 and keratin-8 double-positive (K5+K8+) TECs that reportedly contain TEC progenitors. Whereas the reduction of DP was recovered by a 14-day exposure to 2G, the reduction of mature mTECs and the increment of K5+K8+ TEC persisted. Interestingly, a surgical lesion of the inner ear’s vestibular apparatus inhibited these hypergravity effects. Quantitative PCR analysis revealed that the gene expression of Aire and RANK that are critical for mTEC function and development were up-regulated by the 3-day exposure and subsequently down-regulated by the 14-day exposure to 2G. Unexpectedly, this dynamic change in mTEC gene expression was independent of the vestibular apparatus. Overall, data suggest that 2G causes a temporary reduction of DP and a persistent reduction of mature mTECs in a vestibular system-dependent manner, and also dysregulates mTEC gene expression without involving the vestibular system. These data might provide insight on the impact of gravity change on thymic functions during spaceflight and living.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号