首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2729篇
  免费   188篇
  2022年   17篇
  2021年   20篇
  2020年   18篇
  2019年   24篇
  2018年   41篇
  2017年   28篇
  2016年   44篇
  2015年   77篇
  2014年   77篇
  2013年   176篇
  2012年   140篇
  2011年   115篇
  2010年   89篇
  2009年   75篇
  2008年   133篇
  2007年   160篇
  2006年   144篇
  2005年   137篇
  2004年   139篇
  2003年   119篇
  2002年   122篇
  2001年   94篇
  2000年   75篇
  1999年   68篇
  1998年   34篇
  1997年   35篇
  1996年   17篇
  1995年   27篇
  1994年   29篇
  1993年   23篇
  1992年   49篇
  1991年   56篇
  1990年   58篇
  1989年   72篇
  1988年   48篇
  1987年   47篇
  1986年   30篇
  1985年   26篇
  1984年   13篇
  1983年   13篇
  1982年   16篇
  1981年   19篇
  1980年   15篇
  1979年   15篇
  1978年   11篇
  1977年   11篇
  1976年   10篇
  1975年   13篇
  1974年   23篇
  1972年   11篇
排序方式: 共有2917条查询结果,搜索用时 15 毫秒
971.
CS-0777 is a selective sphingosine 1-phosphate (S1P) receptor 1 modulator with potential benefits in the treatment of autoimmune diseases, including multiple sclerosis. CS-0777 is a prodrug that requires phosphorylation to an active S1P analog, similar to the first-in-class S1P receptor modulator FTY720 (fingolimod). We sought to identify the kinase(s) involved in phosphorylation of CS-0777, anticipating sphingosine kinase (SPHK) 1 or 2 as likely candidates. Unlike kinase activity for FTY720, which is found predominantly in platelets, CS-0777 kinase activity was found mainly in red blood cells (RBCs). N,N-Dimethylsphingosine, an inhibitor of SPHK1 and -2, did not inhibit CS-0777 kinase activity. We purified CS-0777 kinase activity from human RBCs by more than 10,000-fold using ammonium sulfate precipitation and successive chromatography steps, and we identified fructosamine 3-kinase (FN3K) and fructosamine 3-kinase-related protein (FN3K-RP) by mass spectrometry. Incubation of human RBC lysates with 1-deoxy-1-morpholinofructose, a competitive inhibitor of FN3K, inhibited ~10% of the kinase activity, suggesting FN3K-RP is the principal kinase responsible for activation of CS-0777 in blood. Lysates from HEK293 cells overexpressing FN3K or FN3K-RP resulted in phosphorylation of CS-0777 and structurally related molecules but showed little kinase activity for FTY720 and no kinase activity for sphingosine. Substrate preference was highly correlated among FN3K, FN3K-RP, and rat RBC lysates. FN3K and FN3K-RP are known to phosphorylate sugar moieties on glycosylated proteins, but this is the first report that these enzymes can phosphorylate hydrophobic xenobiotics. Identification of the kinases responsible for CS-0777 activation will permit a better understanding of the pharmacokinetics and pharmacodynamics of this promising new drug.  相似文献   
972.
Synaptic loss, which strongly correlates with the decline of cognitive function, is one of the pathological hallmarks of Alzheimer disease. N-cadherin is a cell adhesion molecule essential for synaptic contact and is involved in the intracellular signaling pathway at the synapse. Here we report that the functional disruption of N-cadherin-mediated cell contact activated p38 MAPK in murine primary neurons, followed by neuronal death. We further observed that treatment with Aβ(42) decreased cellular N-cadherin expression through NMDA receptors accompanied by increased phosphorylation of both p38 MAPK and Tau in murine primary neurons. Moreover, expression levels of phosphorylated p38 MAPK were negatively correlated with that of N-cadherin in human brains. Proteomic analysis of human brains identified a novel interaction between N-cadherin and JNK-associated leucine zipper protein (JLP), a scaffolding protein involved in the p38 MAPK signaling pathway. We demonstrated that N-cadherin expression had an inhibitory effect on JLP-mediated p38 MAPK signal activation by decreasing the interaction between JLP and p38 MAPK in COS7 cells. Also, this study demonstrated a novel physical and functional association between N-cadherin and p38 MAPK and suggested neuroprotective roles of cadherin-based synaptic contact. The dissociation of N-cadherin-mediated synaptic contact by Aβ may underlie the pathological basis of neurodegeneration such as neuronal death, synaptic loss, and Tau phosphorylation in Alzheimer disease brain.  相似文献   
973.
The characterization of microsecond dynamics in the folding of multisubdomain proteins has been a major challenge in understanding their often complex folding mechanisms. Using a continuous-flow mixing device coupled with fluorescence lifetime detection, we report the microsecond folding dynamics of dihydrofolate reductase (DHFR), a two-subdomain α/β/α sandwich protein known to begin folding in this time range. The global dimensions of early intermediates were monitored by Förster resonance energy transfer, and the dynamic properties of the local Trp environments were monitored by fluorescence lifetime detection. We found that substantial collapse occurs in both the locally connected adenosine binding subdomain and the discontinuous loop subdomain within 35 μs of initiation of folding from the urea unfolded state. During the fastest observable ∼ 550 μs phase, the discontinuous loop subdomain further contracts, concomitant with the burial of Trp residue(s), as both subdomains achieve a similar degree of compactness. Taken together with previous studies in the millisecond time range, a hierarchical assembly of DHFR—in which each subdomain independently folds, subsequently docks, and then anneals into the native conformation after an initial heterogeneous global collapse—emerges. The progressive acquisition of structure, beginning with a continuously connected subdomain and spreading to distal regions, shows that chain entropy is a significant organizing principle in the folding of multisubdomain proteins and single-domain proteins. Subdomain folding also provides a rationale for the complex kinetics often observed.  相似文献   
974.
975.
A taxonomic study of the genus Padina from Japan, Southeast Asia, and Hawaii based on morphology and gene sequence data (rbcL and cox3) resulted in the recognition of four new species, that is, Padina macrophylla and Padina ishigakiensis from Ryukyu Islands, Japan; Padina maroensis from Hawaii; and Padina usoehtunii from Myanmar and Thailand. All species are bistratose and morphologically different from one another as well as from any known taxa by a combination of characters relating to degree of calcification; the structure, position, and arrangement of hairlines (HLs) and reproductive sori; and the presence or absence of rhizoid‐like groups of hairs and an indusium. Molecular phylogenetic analyses demonstrated a close relationship between P. ishigakiensis, P. macrophylla, P. maroensis, and Padina australis Hauck. The position of P. usoehtunii, however, was not fully resolved, being either sister to a clade comprising the other three new species and P. australis in the rbcL tree or more closely related to a clade comprising several other recently described species in the cox3 tree. The finding of the four new species demonstrates high species diversity particularly in southern Japan. The following characters were first recognized here to be useful for species delimitation: the presence or absence of small rhizoid‐like groups of hairs on the thallus surface, structure and arrangement of HLs on both surfaces either alternate or irregular, and arrangement of the alternating HLs between both surfaces in equal or unequal distance. The evolutionary trajectory of these and six other morphological characters used in species delineation was traced on the phylogenetic tree.  相似文献   
976.
A novel LAGLIDADG-type homing endonuclease (HEase), I-Tsp061I, from the hyperthermophilic archaeon Thermoproteus sp. IC-061 16 S rRNA gene (rDNA) intron was characterized with respect to its structure, catalytic properties and thermostability. It was found that I-Tsp061I is a HEase isoschizomer of the previously described I-PogI and exhibits the highest thermostability among the known LAGLIDADG-type HEases. Determination of the crystal structure of I-Tsp061I at 2.1 A resolution using the multiple isomorphous replacement and anomalous scattering method revealed that the overall fold is similar to that of other known LAGLIDADG-type HEases, despite little sequence similarity between I-Tsp061I and those HEases. However, I-Tsp061I contains important cross-domain polar networks, unlike its mesophilic counterparts. Notably, the polar network Tyr6-Asp104-His180-107O-HOH12-104O-Asn177 exists across the two packed alpha-helices containing both the LAGLIDADG catalytic motif and the GxxxG hydrophobic helix bundle motif. Another important structural feature is the salt-bridge network Asp29-Arg31-Glu182 across N and C-terminal domain interface, which appears to contribute to the stability of the domain/domain packing. On the basis of these structural analyses and extensive mutational studies, we conclude that such cross-domain polar networks play key roles in stabilizing the catalytic center and domain packing, and underlie the hyperthermostability of I-Tsp061I.  相似文献   
977.
Using small-angle X-ray scattering combined with a continuous-flow mixing device, we monitored the microsecond compaction dynamics in the folding of Escherichia coli dihydrofolate reductase, an alpha/beta-type protein. A significant collapse of the radius of gyration from 30 A to 23.2 A occurs within 300 micros after the initiation of refolding by a urea dilution jump. The subsequent folding after the major chain collapse occurs on a considerably longer time-scale. The protein folding trajectories constructed by comparing the development of the compactness and the secondary structure suggest that the specific hydrophobic collapse model rather than the framework model better explains the experimental observations. The folding trajectory of this alpha/beta-type protein is located between those of alpha-helical and beta-sheet proteins, suggesting that native structure determines the folding landscape.  相似文献   
978.
We examined the neuroprotective mechanism of cannabidiol, non-psychoactive component of marijuana, on the infarction in a 4 h mouse middle cerebral artery (MCA) occlusion model in comparison with Delta(9)-tetrahydrocannabinol (Delta(9)-THC). Release of glutamate in the cortex was measured at 2 h after MCA occlusion. Myeloperoxidase (MPO) and cerebral blood flow were measured at 1 h after reperfusion. In addition, infarct size and MPO were determined at 24 and 72 h after MCA occlusion. The neuroprotective effect of cannabidiol was not inhibited by either SR141716 or AM630. Both pre- and post-ischemic treatment with cannabidiol resulted in potent and long-lasting neuroprotection, whereas only pre-ischemic treatment with Delta(9)-THC reduced the infarction. Unlike Delta(9)-THC, cannabidiol did not affect the excess release of glutamate in the cortex after occlusion. Cannabidiol suppressed the decrease in cerebral blood flow by the failure of cerebral microcirculation after reperfusion and inhibited MPO activity in neutrophils. Furthermore, the number of MPO-immunopositive cells was reduced in the ipsilateral hemisphere in cannabidiol-treated group. Cannabidiol provides potent and long-lasting neuroprotection through an anti-inflammatory CB(1) receptor-independent mechanism, suggesting that cannabidiol will have a palliative action and open new therapeutic possibilities for treating cerebrovascular disorders.  相似文献   
979.
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) have been identified as the cause of familial Parkinson's disease (PD) at the PARK8 locus. To begin to understand the physiological role of LRRK2 and its involvement in PD, we have investigated the distribution of LRRK2 mRNA and protein in the adult mouse brain. In situ hybridization studies indicate sites of mRNA expression throughout the mouse brain, with highest levels of expression detected in forebrain regions, including the cerebral cortex and striatum, intermediate levels observed in the hippocampus and cerebellum, and low levels in the thalamus, hypothalamus and substantia nigra. Immunohistochemical studies demonstrate localization of LRRK2 protein to neurones in the cerebral cortex and striatum, and to a variety of interneuronal subtypes in these regions. Furthermore, expression of LRRK2 mRNA in the striatum of VMAT2-deficient mice is unaltered relative to wild-type littermate controls despite extensive dopamine depletion in this mouse model of parkinsonism. Collectively, our results demonstrate that LRRK2 is present in anatomical brain regions of direct relevance to the pathogenesis of PD, including the nigrostriatal dopaminergic pathway, in addition to other regions unrelated to PD pathology, and is likely to play an important role in the normal function of telencephalic forebrain neurones and other neuronal populations.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号