首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   31篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   15篇
  2015年   28篇
  2014年   29篇
  2013年   36篇
  2012年   53篇
  2011年   42篇
  2010年   30篇
  2009年   27篇
  2008年   47篇
  2007年   52篇
  2006年   52篇
  2005年   56篇
  2004年   44篇
  2003年   31篇
  2002年   30篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   8篇
  1997年   8篇
  1996年   1篇
  1995年   7篇
  1994年   11篇
  1993年   8篇
  1992年   9篇
  1991年   5篇
  1990年   3篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   6篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有732条查询结果,搜索用时 31 毫秒
91.
Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Here, we demonstrated the rapid effect of 17beta-estradiol on the density and morphology of spines in the stratum oriens (s.o., basal side) and in the stratum lacunosum-moleculare (s.l.m., apical side) by imaging Lucifer Yellow-injected CA1 neurons in adult male rat hippocampal slices, because spines in s.o. and s.l.m. have been poorly understood as compared with spines in the stratum radiatum. The application of 1nM estradiol-induced a rapid increase in the density of spines of pyramidal neurons within 2h. This increase by estradiol was blocked by Erk MAP kinase inhibitor and estrogen receptor inhibitor in both regions. Effect of blockade by agonists of AMPA receptors and NMDA receptors was different between s.o. and s.l.m. In both regions, ERalpha agonist PPT induced the same enhancing effect of spinogenesis as that induced by estradiol.  相似文献   
92.
Vancomycin chloride (VCM), a glycopeptide antibiotic, is widely used for the therapy of infections caused by methicillin-resistant Staphylococcus aureus. However, nephrotoxicity is a major adverse effect in VCM therapy. In this study, we investigated the cellular mechanisms underlying VCM-induced renal tubular cell injury in cultured LLC-PK1 cells. VCM induced a concentration- and time-dependent cell injury in LLC-PK1 cells. VCM caused increases in the numbers of annexin V-positive/PI-negative cells and TUNEL-positive cells, indicating the involvement of apoptotic cell death in VCM-induced renal cell injury. The VCM-induced apoptosis was accompanied by the activation of caspase-9 and caspase-3/7 and reversed by inhibitors of these caspases. Moreover, VCM caused an increase in intracellular reactive oxygen species production and mitochondrial membrane depolarization, which were reversed by vitamin E. In addition, mitochondrial complex I activity was inhibited by VCM as well as by the complex I inhibitor rotenone, and rotenone mimicked the VCM-induced LLC-PK1 cell injury. These findings suggest that VCM causes apoptotic cell death in LLC-PK1 cells by enhancing mitochondrial superoxide production leading to mitochondrial membrane depolarization followed by the caspase activities. Moreover, mitochondrial complex I may play an important role in superoxide production and renal tubular cell apoptosis induced by VCM.  相似文献   
93.
Cyclins B1 and B2 are subtypes of cyclin B, a regulatory subunit of a maturation/M-phase promoting factor, and they are also highly conserved in many vertebrate species. Cyclin B1 is essential for mitosis, whereas cyclin B2 is regarded as dispensable. However, the overexpression of the cyclin B2 N-terminus containing the cytoplasmic retention signal, but not cyclin B1, inhibits bipolar spindle formation in Xenopus oocytes and embryos. Here we show that endogenous cyclin B2 was localized in and around the germinal vesicle. The perinuclear localization of cyclin B2 was perturbed by the overexpression of its N-terminus containing the cytoplasmic retention signal, which resulted in a spindle defect. This spindle defect was rescued by the overexpression of bipolar kinesin Eg5, which is located at the perinuclear region in the proximity of endogenous cyclin B2. These results demonstrate that the proper localization of cyclin B2 is essential for bipolar spindle formation in Xenopus oocytes.  相似文献   
94.
95.
GTP-bound Ras adopts two interconverting conformations, "inactive" state 1 and "active" state 2. However, the tertiary structure of wild-type (WT) state 1 remains unsolved. Here we solve the state 1 crystal structures of H-Ras WT together with its oncogenic G12V and Q61L mutants. They assume open structures characterized by impaired interactions of both Thr-35 in switch I and Gly-60 in switch II with the γ-phosphate of GTP and possess two surface pockets of mutually different shapes unseen in state 2, a potential target for selective inhibitor development. Furthermore, they provide a structural basis for the low GTPase activity of state 1.  相似文献   
96.
Allergen-specific IgE plays an essential role in the pathogenesis of allergic asthma. Although there has been increasing evidence suggesting the involvement of IL-17 in the disease, the relationship between IL-17 and IgE-mediated asthmatic responses has not yet been defined. In this study, we attempted to elucidate the contribution of IL-17 to an IgE-mediated late-phase asthmatic response and airway hyperresponsiveness (AHR). BALB/c mice passively sensitized with an OVA-specific IgE mAb were challenged with OVA intratracheally four times. The fourth challenge caused a late-phase increase in airway resistance associated with elevated levels of IL-17(+)CD4(+) cells in the lungs. Multiple treatments with a C3a receptor antagonist or anti-C3a mAb during the challenges inhibited the increase in IL-17(+)CD4(+) cells. Meanwhile, a single treatment with the antagonist or the mAb at the fourth challenge suppressed the late-phase increase in airway resistance, AHR, and infiltration by neutrophils in bronchoalveolar lavage fluid. Because IL-17 production in the lungs was significantly repressed by both treatments, the effect of an anti-IL-17 mAb was examined. The late-phase increase in airway resistance, AHR, and infiltration by neutrophils in bronchoalveolar lavage fluid was inhibited. Furthermore, an anti-Gr-1 mAb had a similar effect. Collectively, we found that IgE mediated the increase of IL-17(+)CD4(+) cells in the lungs caused by repeated Ag challenges via C3a. The mechanisms leading to the IgE-mediated late-phase asthmatic response and AHR are closely associated with neutrophilic inflammation through the production of IL-17 induced by C3a.  相似文献   
97.
Phosphoglucomutase (PGM, EC 2.7.5.1) is one of the enzymes constituting the carbohydrate synthesis pathway in higher plants. It catalyzes the reversible conversion of glucose 6-phosphate (Glc6P) to glucose 1-phosphate (Glc1P). Previously, metabolic turnover analysis using (13)CO(2) in tobacco leaves demonstrated that conversion of Glc6P to Glc1P may limit carbon flow into carbohydrate synthesis. In order to assess the effects of PGM, Arabidopsis thaliana cytosolic or plastidial PGM was expressed under the control of cauliflower mosaic virus 35S promoter in tobacco plants (Nicotiana tabacum cv. Xanthi) and phenotypic analysis was performed. The transgenic plants expressing Arabidopsis plastidial PGM showed 3.5-8.2-fold higher PGM activity than that of wild-type, and leaf starch and sucrose contents increased 2.3-3.2-fold and 1.3-1.4-fold, respectively over wild-type levels. In vivo(13)C-labeling experiments indicated that photosynthetically fixed carbon in the transgenic plants could be converted faster to Glc1P and adenosine 5'-diphosphate glucose than in wild-type, suggesting that elevation of plastidial PGM activity should accelerate conversion of Glc6P to Glc1P in chloroplasts and increase carbon flow into starch. On the other hand, transgenic plants expressing Arabidopsis cytosolic PGM showed a 2.1-3.4-fold increase in PGM activity over wild-type and a decrease of leaf starch content, but no change in sucrose content. These results suggest that plastidial PGM limits photosynthetic carbon flow into starch.  相似文献   
98.
There is a little information about the effects of iron overload on cartilage metabolism. In the present study, we examined the effects of excess iron on the differentiation and mineralization of cultured chondrocytes, ATDC5 cells. We used ferric ammonium citrate (FAC) as a ferric ion donor and desferrioxamine (DFO) as a ferric ion chelator. Neither chemical affected the production of proteoglycan, a marker of an early stage of ATDC5 differentiation. In contrast, FAC inhibited the deposition of calcium, a late-stage event in chondrocyte differentiation, by ATDC5 cells in a dose-dependent manner, and DFO accelerated it. Energy dispersive X-ray spectroscopy/scanning electron microscope analysis revealed that the levels of iron and calcium in cells treated with FAC were increased and decreased, respectively. Furthermore, FAC inhibited the expression of matrix metalloproteinase 13 mRNA, another marker of late-stage chondrocyte differentiation. In addition, we found that the heavy and light chains of ferritin were expressed specifically at a late stage of ATDC5 differentiation, and the levels of both proteins were enhanced by the addition of iron. These results suggest that iron overload might give rise to osteopenia and arthritis by inhibiting chondrocyte differentiation and mineralization.  相似文献   
99.
This study examined the accumulation and tissue distribution of radioactive cesium nuclides in Japanese Black beef heifers raised on roughage contaminated with radioactive fallout due to the accident at the Fukushima Daiichi Nuclear Power Station on March 2011. Radiocesium feeding increased both (134)Cs and (137)Cs levels in all tissues tested. The kidney had the highest level and subcutaneous adipose had the lowest of radioactive cesium in the tissues. Different radioactive cesium levels were not found among parts of the muscles. These results indicate that radiocesium accumulated highly in the kidney and homogenously in the skeletal muscles in the heifers.  相似文献   
100.
Kono N  Arakawa K  Tomita M 《PloS one》2012,7(4):e34526
In bacterial circular chromosomes and most plasmids, the replication is known to be terminated when either of the following occurs: the forks progressing in opposite directions meet at the distal end of the chromosome or the replication forks become trapped by Tus proteins bound to Ter sites. Most bacterial genomes have various polarities in their genomic structures. The most notable feature is polar genomic compositional asymmetry of the bases G and C in the leading and lagging strands, called GC skew. This asymmetry is caused by replication-associated mutation bias, and this "footprint" of the replication machinery suggests that, in contrast to the two known mechanisms, replication termination occurs near the chromosome dimer resolution site dif. To understand this difference between the known replication machinery and genomic compositional bias, we undertook a simulation study of genomic mutations, and we report here how different replication termination models contribute to the generation of replication-related genomic compositional asymmetry. Contrary to naive expectations, our results show that a single finite termination site at dif or at the GC skew shift point is not sufficient to reconstruct the genomic compositional bias as observed in published sequences. The results also show that the known replication mechanisms are sufficient to explain the position of the GC skew shift point.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号