首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15827篇
  免费   1518篇
  国内免费   20篇
  17365篇
  2023年   97篇
  2022年   173篇
  2021年   385篇
  2020年   178篇
  2019年   281篇
  2018年   312篇
  2017年   292篇
  2016年   440篇
  2015年   777篇
  2014年   801篇
  2013年   1005篇
  2012年   1217篇
  2011年   1187篇
  2010年   725篇
  2009年   641篇
  2008年   870篇
  2007年   914篇
  2006年   766篇
  2005年   734篇
  2004年   719篇
  2003年   585篇
  2002年   595篇
  2001年   242篇
  2000年   243篇
  1999年   208篇
  1998年   176篇
  1997年   132篇
  1996年   131篇
  1995年   120篇
  1994年   105篇
  1993年   109篇
  1992年   159篇
  1991年   122篇
  1990年   114篇
  1989年   112篇
  1988年   107篇
  1987年   94篇
  1986年   90篇
  1985年   118篇
  1984年   91篇
  1983年   75篇
  1982年   93篇
  1980年   67篇
  1979年   69篇
  1978年   57篇
  1977年   71篇
  1976年   58篇
  1975年   65篇
  1974年   66篇
  1973年   70篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Variance stabilization is a step in the preprocessing of microarray data that can greatly benefit the performance of subsequent statistical modeling and inference. Due to the often limited number of technical replicates for Affymetrix and cDNA arrays, achieving variance stabilization can be difficult. Although the Illumina microarray platform provides a larger number of technical replicates on each array (usually over 30 randomly distributed beads per probe), these replicates have not been leveraged in the current log2 data transformation process. We devised a variance-stabilizing transformation (VST) method that takes advantage of the technical replicates available on an Illumina microarray. We have compared VST with log2 and Variance-stabilizing normalization (VSN) by using the Kruglyak bead-level data (2006) and Barnes titration data (2005). The results of the Kruglyak data suggest that VST stabilizes variances of bead-replicates within an array. The results of the Barnes data show that VST can improve the detection of differentially expressed genes and reduce false-positive identifications. We conclude that although both VST and VSN are built upon the same model of measurement noise, VST stabilizes the variance better and more efficiently for the Illumina platform by leveraging the availability of a larger number of within-array replicates. The algorithms and Supplementary Data are included in the lumi package of Bioconductor, available at: www.bioconductor.org.  相似文献   
992.
The epithelial barrier is the first innate defense of the gastrointestinal tract and selectively regulates transport from the lumen to the underlying tissue compartments, restricting the transport of smaller molecules across the epithelium and almost completely prohibiting epithelial macromolecular transport. This selectivity is determined by the mucous gel layer, which limits the transport of lipophilic molecules and both the apical receptors and tight junctional protein complexes of the epithelium. In vitro cell culture models of the epithelium are convenient, but as a model, they lack the complexity of interactions between the microbiota, mucous-gel, epithelium and immune system. On the other hand, in vivo assessment of intestinal absorption or permeability may be performed, but these assays measure overall gastrointestinal absorption, with no indication of site specificity. Ex vivo permeability assays using "intestinal sacs" are a rapid and sensitive method of measuring either overall intestinal integrity or comparative transport of a specific molecule, with the added advantage of intestinal site specificity. Here we describe the preparation of intestinal sacs for permeability studies and the calculation of the apparent permeability (Papp)of a molecule across the intestinal barrier. This technique may be used as a method of assessing drug absorption, or to examine regional epithelial barrier dysfunction in animal models of gastrointestinal disease.  相似文献   
993.
994.
995.
Prevention and reaction are the foundation for any defence system. In insects, the primary defences against pathogens and parasites limit invasion; the secondary ones (e.g. immune system) act when the cuticle and other primary defences fail. Because investment in both aspects of defence may be costly, they should be regulated in a plastic or variable way in accordance with the risk of infection. The mealworm beetle Tenebrio molitor L. changes cuticle colour and its resistance to fungal infection when subject to high population density, although such resistance is a result of the primary (cuticle) defences rather than the secondary (immunological) ones. The present study tests the hypothesis that the physical and chemical properties of the primary defences in T. molitor change with cuticular darkness. Beetles expressing black phenotypes (or with darker cuticle) have a thicker cuticle, with four well organized layers (epi‐, exo‐, endocuticle and formation zone) and more melanin than tan beetles. The cuticle properties investigated in the present study are likely to be the underlying mechanisms of pathogen resistance in black beetles, including the content of carbonylated proteins, which in black beetles was almost half that of tan beetles after exposure to ultraviolet radiation. It is proposed that, in polyphenic insects (such as mealworm beetles), primary and secondary defences are regulated pleiotropically, with the genes responsible for the expression of one defence having a positive effect on others, whereas, in polymorphic insects, there is no such link and so investment in one defence may impair others.  相似文献   
996.
A variable number tandem repeat polymorphism in the coding region of the circadian clock PERIOD3 (PER3) gene has been shown to affect sleep. Because circadian rhythms and sleep are known to modulate sympathovagal balance, we investigated whether homozygosity for this PER3 polymorphism is associated with changes in autonomic nervous system (ANS) activity during sleep and wakefulness at baseline and after sleep deprivation. Twenty-two healthy participants were selected according to their PER3 genotype. ANS activity, evaluated by heart rate (HR) and HR variability (HRV) indexes, was quantified during baseline sleep, a 40-h period of wakefulness, and recovery sleep. Sleep deprivation induced an increase in slow-wave sleep (SWS), a decrease in the global variability, and an unbalance of the ANS with a loss of parasympathetic predominance and an increase in sympathetic activity. Individuals homozygous for the longer allele (PER3(5/5)) had more SWS, an elevated sympathetic predominance, and a reduction of parasympathetic activity compared with PER3(4/4), in particular during baseline sleep. The effects of genotype were strongest during non-rapid eye movement (NREM) sleep and absent or much smaller during REM sleep. The NREM-REM cycle-dependent modulation of the low frequency-to-(low frequency + high frequency) ratio was diminished in PER3(5/5) individuals. Circadian phase modulated HR and HRV, but no interaction with genotype was observed. In conclusion, the PER3 polymorphism affects the sympathovagal balance in cardiac control in NREM sleep similar to the effect of sleep deprivation.  相似文献   
997.
Delta(9)-tetrahydrocannabinol (THC), the psychoactive ingredient of marijuana, has useful medicinal properties but also undesirable side effects. The brain receptor for THC, CB(1), is also activated by the endogenous cannabinoids anandamide and 2-arachidonylglycerol (2-AG). Augmentation of endocannabinoid signaling by blockade of their metabolism may offer a more selective pharmacological approach compared with CB(1) agonists. Consistent with this premise, inhibitors of the anandamide-degrading enzyme fatty acid amide hydrolase (FAAH) produce analgesic and anxiolytic effects without cognitive defects. In contrast, we show that dual blockade of the endocannabinoid-degrading enzymes monoacylglycerol lipase (MAGL) and FAAH by selected organophosphorus agents leads to greater than ten-fold elevations in brain levels of both 2-AG and anandamide and to robust CB(1)-dependent behavioral effects that mirror those observed with CB(1) agonists. Arachidonic acid levels are decreased by the organophosphorus agents in amounts equivalent to elevations in 2-AG, which indicates that endocannabinoid and eicosanoid signaling pathways may be coordinately regulated in the brain.  相似文献   
998.
Peptide substrates of well-defined protein kinases were microinjected into aleurone protoplasts of barley (Hordeum vulgare L. cv Himalaya) to inhibit, and therefore identify, protein kinase-regulated events in the transduction of the gibberellin (GA) and abscisic acid signals. Syntide-2, a substrate designed for Ca2+- and calmodulin (CaM)-dependent kinases, selectively inhibited the GA response, leaving constitutive and abscisic acid-regulated events unaffected. Microinjection of syntide did not affect the GA-induced increase in cytosolic [Ca2+], suggesting that it inhibited GA action downstream of the Ca2+ signal. When photoaffinity-labeled syntide-2 was electroporated into protoplasts and cross-linked to interacting proteins in situ, it selectively labeled proteins of approximately 30 and 55 kD. A 54-kD, soluble syntide-2 phosphorylating protein kinase was detected in aleurone cells. This kinase was activated by Ca2+ and was CaM independent, but was inhibited by the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (250 μm), suggesting that it was a CaM-domain protein kinase-like activity. These results suggest that syntide-2 inhibits the GA response of the aleurone via an interaction with this kinase, implicating the 54-kD kinase as a Ca2+-dependent regulator of the GA response in these cells.  相似文献   
999.
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.  相似文献   
1000.
Increased N inputs through chronic atmospheric deposition has enriched temperate forest ecosystems, altering critical ecosystem functions such as decomposition and potentially resulting in a shift to P limitation. We used a combination of microbial biomass stoichiometry and enzymatic activity analyses to evaluate the potential for microbial nutrient limitation over the course of a growing season in response to multi-decadal, whole-watershed N enrichments and a one time, plot-scale P addition that occurred in the 22nd year of whole-watershed treatments. The one-time P addition increased microbial biomass threefold and reduced N-acetyl-glucosaminidase (NAG) and acid phosphatase (AP) activity 1 week after application, but there was no interaction with long-term experimental N enrichment to indicate a shift to P limitation. However, both N and P treatments increased C limitation independently of each other over the duration of the study based on measured increases in β-1,4-glucosidase (BG) activity relative to NAG and AP. Microbial biomass stoichiometry and enzyme activity indicated that BBWM is P limited regardless of N status. Our findings highlight the complex interactions between C, N, and P use and limitation in a forested ecosystem subjected to long-term N enrichment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号