首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  1986年   1篇
  1980年   3篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
11.
12.
Biodegradation of long chain n-alkanes and crude oil with fast rate and high concentration are desirable for bioremediation, especially in heavily oil-polluted areas, and enhanced oil recovery. We discovered Rhodococcus sp. Moj-3449 with such unique abilities by screening microorganisms for the growth on n-hexadecane at 30 mg/mL. The new strain grew very fast on 120 mg/mL of n-hexadecane giving a cell density of 14.7 g cdw/L after only 2 days’ incubation. During the growth with this strain, the oil–water phases were rapidly emulsified, giving rise to tolerance to high alkane concentration (250 mg/mL) and fast growth rate of 0.10–0.20 h?1 for alkane concentration of 1–180 mg/mL. The degraded concentration of n-hexadecane increased linearly with the initial alkane concentration (1–250 mg/mL). Incubation on n-hexadecane at 250 mg/mL for 7 days gave a cell density of 13.5 g cdw/L and degraded 124 mg/mL of n-hexadecane. The strain grew also fast on n-dodecane (C12), n-tetradecane (C14), and n-octadecane (C18), with degradation preference of C14 (=C16) > C12 > C18. Different from many alkane-degrading strains, Rhodococcus sp. Moj-3449 was found to have subterminal oxidation pathway. Rhodococcus sp. Moj-3449 degraded also crude oil fast at 60–250 mg/mL, with a wide range of n-alkanes (C10–C35) as substrates in which C14–C19 are preferred. The degradation ability increased with initial oil concentration from 60 to 150 mg/mL and slightly decreased afterwards. Incubation on 150 mg/mL of crude oil for 7 days degraded 37% of n-alkanes. The outstanding ability of rapidly degrading long chain n-alkanes and crude oil at high concentration makes Rhodococcus sp. Moj-3449 potentially useful for bioremediation and microbial enhanced oil recovery.  相似文献   
13.
Genome‐scale modeling of mouse hybridoma cells producing monoclonal antibodies (mAb) was performed to elucidate their physiological and metabolic states during fed‐batch cell culture. Initially, feed media nutrients were monitored to identify key components among carbon sources and amino acids with significant impact on the desired outcome, for example, cell growth and antibody production. The monitored profiles indicated rapid assimilation of glucose and glutamine during the exponential growth phase. Significant increase in mAb concentration was also observed when glutamine concentration was controlled at 0.5 mM as a feeding strategy. Based on the reconstructed genome‐scale metabolic network of mouse hybridoma cells and fed‐batch profiles, flux analysis was then implemented to investigate the cellular behavior and changes in internal fluxes during the cell culture. The simulated profile of the cell growth was consistent with experimentally measured specific growth rate. The in silico simulation results indicated (i) predominant utilization of glycolytic pathway for ATP production, (ii) importance of pyruvate node in metabolic shifting, and (iii) characteristic pattern in lactate to glucose ratio during the exponential phase. In future, experimental and in silico analyses can serve as a promising approach to identifying optimal feeding strategies and potential cell engineering targets as well as facilitate media optimization for the enhanced production of mAb or recombinant proteins in mammalian cells. Biotechnol. Bioeng. 2009;102: 1494–1504. © 2008 Wiley Periodicals, Inc.  相似文献   
14.
15.
Bioethanol has been recognized as a potential alternative energy source. Among various ethanol-producing microbes, Zymomonas mobilis has acquired special attention due to its higher ethanol yield and tolerance. However, cellular metabolism in Z. mobilis remains unclear, hindering its practical application for bioethanol production. To elucidate such physiological characteristics, we reconstructed and validated a genome-scale metabolic network (iZM363) of Z. mobilis ATCC31821 (ZM4) based on its annotated genome and biochemical information. The phenotypic behaviors and metabolic states predicted by our genome-scale model were highly consistent with the experimental observations of Z. mobilis ZM4 strain growing on glucose as well as NMR-measured intracellular fluxes of an engineered strain utilizing glucose, fructose, and xylose. Subsequent comparative analysis with Escherichia coli and Saccharomyces cerevisiae as well as gene essentiality and flux coupling analyses have also confirmed the functional role of pdc and adh genes in the ethanologenic activity of Z. mobilis, thus leading to better understanding of this natural ethanol producer. In future, the current model could be employed to identify potential cell engineering targets, thereby enhancing the productivity of ethanol in Z. mobilis.  相似文献   
16.
We explored the physiological and metabolic effects of different carbon sources (glucose, fructose, and glucose/fructose mixture) in phosphoglucose isomerase (pgi) knockout Escherichia coli mutant producing shikimic acid (SA). It was observed that the pgi(-) mutant grown on glucose exhibited significantly lower cell growth compared with the pgi(+) strain and its mixed glucose/fructose fermentation grew well. Interestingly, when fructose was used as a carbon source, the pgi(-) mutant showed the enhanced SA production compared with the pgi(+) strain. In silico analysis of a genome-scale E. coli model was then conducted to characterize the cellular metabolism and quantify NAPDH regeneration, which allowed us to understand such experimentally observed attenuated cell growth and enhanced SA production in glucose- and fructose-consuming pgi(-) mutant, respectively with respect to cofactor regeneration.  相似文献   
17.
18.
The Sundarbans, the largest contiguous mangrove forest in the world, covers 6,017 km2 of the coastal zone of Bangladesh. Heritiera fomes Buch.-Ham., Excoecaria agallocha L. and Ceriops decandra (Griff.) Ding Hou jointly cover 95% of the forest area. In this study, the results of four forest inventories have been analyzed to understand observed vegetation dynamics of the Sundarbans from 1926 to 1997. The diversity of forest types has been gradually reduced over time, but H. fomes and E. agallocha have maintained their dominance over large portions of the forest. H. fomes is spread over 67% of the vegetated area of the forest, concentrated mostly in the northeastern area, and constitutes 75% of the density of trees with >15 cm dbh. The distribution and stem density of H. fomes show negative relationships with that of E. agallocha and C. decandra. In terms of coverage, E. agallocha is the most common species, spread over 74% of the vegetated area of the forest, and constitutes 39% of the density of trees with >2.5 cm dbh. On a longer timeframe (1926–1997), the dominance (coverage and density of larger diameter trees) of H. fomes as well as that of E. agallocha is declining. Even on parameters such as density of trees with >15 cm dbh, the dominance of E. agallocha is declining at a much greater rate than H. fomes. This observation contradicts the successional schemes proposed by different authors. This might indicate that theorizing successional schemes based on short-term observations on vegetation dynamics is not sufficient. The effect of human interference, changes in hydroedaphic condition and species interaction should be taken into consideration during explaining observed vegetation dynamics. Moreover, the need to understand vegetation trajectories at the micro-scale should be emphasized.  相似文献   
19.
Ahsan N  Lee DG  Alam I  Kim PJ  Lee JJ  Ahn YO  Kwak SS  Lee IJ  Bahk JD  Kang KY  Renaut J  Komatsu S  Lee BH 《Proteomics》2008,8(17):3561-3576
While the phytotoxic responses of arsenic (As) on plants have been studied extensively, based on physiological and biochemical aspects, very little is known about As stress-elicited changes in plants at the proteome level. Hydroponically grown 2-wk-old rice seedlings were exposed to different doses of arsenate, and roots were collected after 4 days of treatment, as well as after a recovery period. To gain a comprehensive understanding of the precise mechanisms underlying As toxicity, metabolism, and the defense reactions in plants, a comparative proteomic analysis of rice roots has been conducted in combination with physiological and biochemical analyses. Arsenic treatment resulted in increases of As accumulation, lipid peroxidation, and in vivo H(2)O(2) contents in roots. A total of 23 As-regulated proteins including predicted and novel ones were identified using 2-DE coupled with MS analyses. The expression levels of S-adenosylmethionine synthetase (SAMS), GSTs, cysteine synthase (CS), GST-tau, and tyrosine-specific protein phosphatase proteins (TSPP) were markedly up-regulated in response to arsenate, whereas treatment by H(2)O(2) also regulated the levels of CS suggesting that its expression was certainly regulated by As or As-induced oxidative stress. In addition, an omega domain containing GST was induced only by arsenate. However, it was not altered by treatment of arsenite, copper, or aluminum, suggesting that it may play a particular role in arsenate stress. Analysis of the total glutathione (GSH) content and enzymatic activity of glutathione reductase (GR) in rice roots during As stress revealed that their activities respond in a dose-dependent manner of As. These results suggest that SAMS, CS, GSTs, and GR presumably work synchronously wherein GSH plays a central role in protecting cells against As stress.  相似文献   
20.
: Several of the cyclooxygenase products of arachidonic acid were measured in the cerebral hemispheres of gerbils subjected to transient interruption of the cerebral circulation. The levels of PGD2, PGF2α, PGE2, TXB2, 13,14-H2-15-keto-PGE2, and the stable nonenzymic product of prostacyclin, 6-keto-PGF1α, were not altered at the end of a 5-min period of ischemia. However, the onset of reperfusion was accompanied by a rapid accumulation of these products. Levels were highest during the initial period of reperfusion, then decreased to approach control levels after 120 min. PGD2, PGF2α, and PGE2 were the predominant metabolites detected. This postischemic accumulation of arachidonic acid metabolites could be blocked by prior administration of inhibitors of cyclooxygenase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号