首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   37篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   21篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   7篇
  2016年   14篇
  2015年   20篇
  2014年   30篇
  2013年   33篇
  2012年   40篇
  2011年   42篇
  2010年   23篇
  2009年   15篇
  2008年   29篇
  2007年   21篇
  2006年   25篇
  2005年   22篇
  2004年   13篇
  2003年   23篇
  2002年   14篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有457条查询结果,搜索用时 46 毫秒
61.
Although the family of genes encoding for olfactory receptors was identified more than 15 years ago, the difficulty of functionally expressing these receptors in an heterologous system has, with only some exceptions, rendered the receptive range of given olfactory receptors largely unknown. Furthermore, even when successfully expressed, the task of probing such a receptor with thousands of odors/ligands remains daunting. Here we provide proof of concept for a solution to this problem. Using computational methods, we tune an electronic nose to the receptive range of an olfactory receptor. We then use this electronic nose to predict the receptors' response to other odorants. Our method can be used to identify the receptive range of olfactory receptors, and can also be applied to other questions involving receptor–ligand interactions in non-olfactory settings.  相似文献   
62.
Calcium ions (Ca2+) released from inositol trisphosphate (IP3)-sensitive intracellular stores may participate in both the transient and extended regulation of neuronal excitability in neocortical and hippocampal pyramidal neurons. IP3 receptor (IP3R) antagonists represent an important tool for dissociating these consequences of IP3 generation and IP3R-dependent internal Ca2+ release from the effects of other, concurrently stimulated second messenger signaling cascades and Ca2+ sources. In this study, we have described the actions of the IP3R and store-operated Ca2+ channel antagonist, 2-aminoethoxydiphenyl-borate (2-APB), on internal Ca2+ release and plasma membrane excitability in neocortical and hippocampal pyramidal neurons. Specifically, we found that a dose of 2-APB (100 μM) sufficient for attenuating or blocking IP3-mediated internal Ca2+ release also raised pyramidal neuron excitability. The 2-APB-dependent increase in excitability reversed upon washout and was characterized by an increase in input resistance, a decrease in the delay to action potential onset, an increase in the width of action potentials, a decrease in the magnitude of afterhyperpolarizations (AHPs), and an increase in the magnitude of post-spike afterdepolarizations (ADPs). From these observations, we conclude that 2-APB potently and reversibly increases neuronal excitability, likely via the inhibition of voltage- and Ca2+-dependent potassium (K+) conductances.  相似文献   
63.
Logistic regression is often used to help make medical decisions with binary outcomes. Here we evaluate the use of several methods for selection of variables in logistic regression. We use a large dataset to predict the diagnosis of myocardial infarction in patients reporting to an emergency room with chest pain. Our results indicate that some of the examined methods are well suited for variable selection in logistic regression and that our model, and our myocardial infarction risk calculator, can be an additional tool to aid physicians in myocardial infarction diagnosis.  相似文献   
64.
Bassoon and the related protein Piccolo are core components of the presynaptic cytomatrix at the active zone of neurotransmitter release. They are transported on Golgi-derived membranous organelles, called Piccolo-Bassoon transport vesicles (PTVs), from the neuronal soma to distal axonal locations, where they participate in assembling new synapses. Despite their net anterograde transport, PTVs move in both directions within the axon. How PTVs are linked to retrograde motors and the functional significance of their bidirectional transport are unclear. In this study, we report the direct interaction of Bassoon with dynein light chains (DLCs) DLC1 and DLC2, which potentially link PTVs to dynein and myosin V motor complexes. We demonstrate that Bassoon functions as a cargo adapter for retrograde transport and that disruption of the Bassoon–DLC interactions leads to impaired trafficking of Bassoon in neurons and affects the distribution of Bassoon and Piccolo among synapses. These findings reveal a novel function for Bassoon in trafficking and synaptic delivery of active zone material.  相似文献   
65.
Acoustic heart signals, generated by the mechanical processes of the cardiac cycle, carry significant information about the underlying functioning of the cardiovascular system. We describe a computational analysis framework for identifying distinct morphologies of heart sounds and classifying them into physiological states. The analysis framework is based on hierarchical clustering, compact data representation in the feature space of cluster distances and a classification algorithm. We applied the proposed framework on two heart sound datasets, acquired during controlled alternations of the physiological conditions, and analyzed the morphological changes induced to the first heart sound (S1), and the ability to predict physiological variables from the morphology of S1. On the first dataset of 12 subjects, acquired while modulating the respiratory pressure, the algorithm achieved an average accuracy of 82 ± 7% in classifying the level of breathing resistance, and was able to estimate the instantaneous breathing pressure with an average error of 19 ± 6%. A strong correlation of 0.92 was obtained between the estimated and the actual breathing efforts. On the second dataset of 11 subjects, acquired during pharmacological stress tests, the average accuracy in classifying the stress stage was 86 ± 7%. The effects of the chosen raw signal representation, distance metrics and classification algorithm on the performance were studied on both real and simulated data. The results suggest that quantitative heart sound analysis may provide a new non-invasive technique for continuous cardiac monitoring and improved detection of mechanical dysfunctions caused by cardiovascular and cardiopulmonary diseases.  相似文献   
66.
Neurotransmitter release from presynaptic nerve terminals is restricted to specialized areas of the plasma membrane, so-called active zones. Active zones are characterized by a network of cytoplasmic scaffolding proteins involved in active zone generation and synaptic transmission. To analyze the modes of biogenesis of this cytomatrix, we asked how Bassoon and Piccolo, two prototypic active zone cytomatrix molecules, are delivered to nascent synapses. Although these proteins may be transported via vesicles, little is known about the importance of a vesicular pathway and about molecular determinants of cytomatrix molecule trafficking. We found that Bassoon and Piccolo co-localize with markers of the trans-Golgi network in cultured neurons. Impairing vesicle exit from the Golgi complex, either using brefeldin A, recombinant proteins, or a low temperature block, prevented transport of Bassoon out of the soma. Deleting a newly identified Golgi-binding region of Bassoon impaired subcellular targeting of recombinant Bassoon. Overexpressing this region to specifically block Golgi binding of the endogenous protein reduced the concentration of Bassoon at synapses. These results suggest that, during the period of bulk synaptogenesis, a primordial cytomatrix assembles in a trans-Golgi compartment. They further indicate that transport via Golgi-derived vesicles is essential for delivery of cytomatrix proteins to the synapse. Paradigmatically this establishes Golgi transit as an obligatory step for subcellular trafficking of distinct cytoplasmic scaffolding proteins.  相似文献   
67.
We studied the lysophosphatidic acid receptor-1 (LPA1) gene, which we found to be expressed endogenously in cultured hippocampal neurons, and in vivo in young (1-week-old) rat brain slices. Overexpressed green fluorescent protein (GFP)-tagged, membrane-associated LPA1 accumulated in a punctate manner over the entire dendritic tree and caused an increase in dendritic spine density. About half of the dendritic spines in the LPA1-transfected neurons displayed distinct fluorescent puncta, and this subset of spines was also substantially larger than puncta-free, LPA1-transfected or control GFP spines. This phenotype could also be seen in cells transfected with a ligand-binding, defective mutant and is therefore not dependent on interaction with an ambient ligand. While spontaneous miniature excitatory synaptic currents were of the same amplitudes, they decayed slower in LPA1-transfected neurons compared with GFP controls. We propose that LPA1 may play a role in the formation and modulation of the dendritic spine synapse.  相似文献   
68.
69.
Bone modeling and remodeling has been the subject of extensive experimental studies. There have been several mathematical models proposed to explain the observed behavior, as well. A different approach is taken here in which the bone is treated from a macroscopic view point. In this investigation, a one-dimensional analytical model is used to shed light on the factors which play the greatest role in modeling or growth of cortical bone at the periosteal surface. It is presumed that bone growth is promoted when increased amounts of bone nutrients, such as nitric oxide synthase (NOS) or messenger molecules, such as prostaglandin E2 (PGE2), seep out to the periosteal surface of cortical bone and are absorbed by osteoblasts. The transport of the bone nutrients is assumed to be a strain controlled process. Equations for the flux of these nutrients are written for a one-dimensional model of a long bone. The obtained partial differential equation is linearized and solved analytically. Based upon the seepage of nutrients out of the bone, the effect of loading frequency, number of cycles and strain level is examined for several experiments that were found in the literature. It is seen that bone nutrient seepage is greatest on the tensile side of the bone; this location coincides with the greatest amount of bone modeling.  相似文献   
70.
First structures of an active bacterial tyrosinase reveal copper plasticity   总被引:2,自引:0,他引:2  
Tyrosinase is a member of the type 3 copper enzyme family that is involved in the production of melanin in a wide range of organisms. The crystal structures of a tyrosinase from Bacillus megaterium were determined at a resolution of 2.0-2.3 Å. The enzyme crystallized as a dimer in the asymmetric unit and was shown to be active in crystal. The overall monomeric structure is similar to that of the monomer of the previously determined tyrosinase from Streptomyces castaneoglobisporus, but it does not contain an accessory Cu-binding “caddie” protein. Two Cu(II) ions, serving as the major cofactors within the active site, are coordinated by six conserved histidine residues. However, determination of structures under different conditions shows varying occupancies and positions of the copper ions. This apparent mobility in copper binding modes indicates that there is a pathway by which copper is accumulated or lost by the enzyme. Additionally, we suggest that residues R209 and V218, situated in a second shell of residues surrounding the active site, play a role in substrate binding orientation based on their flexibility and position. The determination of a structure with the inhibitor kojic acid, the first tyrosinase structure with a bound ligand, revealed additional residues involved in the positioning of substrates in the active site. Comparison of wild-type structures with the structure of the site-specific variant R209H, which possesses a higher monophenolase/diphenolase activity ratio, lends further support to a previously suggested mechanism by which monophenolic substrates dock mainly to CuA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号