首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   31篇
  366篇
  2023年   5篇
  2022年   6篇
  2021年   16篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   11篇
  2016年   8篇
  2015年   23篇
  2014年   26篇
  2013年   27篇
  2012年   32篇
  2011年   35篇
  2010年   23篇
  2009年   20篇
  2008年   21篇
  2007年   22篇
  2006年   14篇
  2005年   12篇
  2004年   9篇
  2003年   10篇
  2002年   10篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1984年   1篇
  1977年   2篇
排序方式: 共有366条查询结果,搜索用时 0 毫秒
21.
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.  相似文献   
22.
Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5′UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2β and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.  相似文献   
23.
Subunit composition and architectural structure of the 26S proteasome lid is strictly conserved between all eukaryotes. This eight-subunit complex bears high similarity to the eukaryotic translation initiation factor 3 and to the COP9 signalosome (CSN), which together define the proteasome CSN/COP9/initiation factor (PCI) troika. In some unicellular eukaryotes, the latter two complexes lack key subunits, encouraging questions about the conservation of their structural design. Here we demonstrate that, in Saccharomyces cerevisiae, Rpn5 plays dual roles by stabilizing proteasome and CSN structures independently. Proteasome and CSN complexes are easily dissected, with Rpn5 the only subunit in common. Together with Rpn5, we identified a total of six bona fide subunits at roughly stoichiometric ratios in isolated, affinity-purified CSN. Moreover, the copy of Rpn5 associated with the CSN is required for enzymatic hydrolysis of Rub1/Nedd8 conjugated to cullins. We propose that multitasking by a single subunit, Rpn5 in this case, allows it to function in different complexes simultaneously. These observations demonstrate that functional substitution of subunits by paralogues is feasible, implying that the canonical composition of the three PCI complexes in S. cerevisiae is more robust than hitherto appreciated.  相似文献   
24.
Bouaziz M  Ambroise C  Guedj M 《PloS one》2011,6(12):e28845
Genome-Wide Association Studies are powerful tools to detect genetic variants associated with diseases. Their results have, however, been questioned, in part because of the bias induced by population stratification. This is a consequence of systematic differences in allele frequencies due to the difference in sample ancestries that can lead to both false positive or false negative findings. Many strategies are available to account for stratification but their performances differ, for instance according to the type of population structure, the disease susceptibility locus minor allele frequency, the degree of sampling imbalanced, or the sample size. We focus on the type of population structure and propose a comparison of the most commonly used methods to deal with stratification that are the Genomic Control, Principal Component based methods such as implemented in Eigenstrat, adjusted Regressions and Meta-Analyses strategies. Our assessment of the methods is based on a large simulation study, involving several scenarios corresponding to many types of population structures. We focused on both false positive rate and power to determine which methods perform the best. Our analysis showed that if there is no population structure, none of the tests led to a bias nor decreased the power except for the Meta-Analyses. When the population is stratified, adjusted Logistic Regressions and Eigenstrat are the best solutions to account for stratification even though only the Logistic Regressions are able to constantly maintain correct false positive rates. This study provides more details about these methods. Their advantages and limitations in different stratification scenarios are highlighted in order to propose practical guidelines to account for population stratification in Genome-Wide Association Studies.  相似文献   
25.

Background

Eukaryotic chromosomes end with telomeres, which in most organisms are composed of tandem DNA repeats associated with telomeric proteins. These DNA repeats are synthesized by the enzyme telomerase, whose activity in most human tissues is tightly regulated, leading to gradual telomere shortening with cell divisions. Shortening beyond a critical length causes telomere uncapping, manifested by the activation of a DNA damage response (DDR) and consequently cell cycle arrest. Thus, telomere length limits the number of cell divisions and provides a tumor-suppressing mechanism. However, not only telomere shortening, but also damaged telomere structure, can cause telomere uncapping. Dyskeratosis Congenita (DC) and its severe form Hoyeraal-Hreidarsson Syndrome (HHS) are genetic disorders mainly characterized by telomerase deficiency, accelerated telomere shortening, impaired cell proliferation, bone marrow failure, and immunodeficiency.

Methodology/Principal Findings

We studied the telomere phenotypes in a family affected with HHS, in which the genes implicated in other cases of DC and HHS have been excluded, and telomerase expression and activity appears to be normal. Telomeres in blood leukocytes derived from the patients were severely short, but in primary fibroblasts they were normal in length. Nevertheless, a significant fraction of telomeres in these fibroblasts activated DDR, an indication of their uncapped state. In addition, the telomeric 3′ overhangs are diminished in blood cells and fibroblasts derived from the patients, consistent with a defect in telomere structure common to both cell types.

Conclusions/Significance

Altogether, these results suggest that the primary defect in these patients lies in the telomere structure, rather than length. We postulate that this defect hinders the access of telomerase to telomeres, thus causing accelerated telomere shortening in blood cells that rely on telomerase to replenish their telomeres. In addition, it activates the DDR and impairs cell proliferation, even in cells with normal telomere length such as fibroblasts. This work demonstrates a telomere length-independent pathway that contributes to a telomere dysfunction disease.  相似文献   
26.
27.
Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, cancer predisposition, and increased cellular sensitivity to DNA-cross-linking agents. The products of seven of the nine identified FA genes participate in a protein complex required for monoubiquitination of the FANCD2 protein. Direct interaction of the FANCE protein with both fellow FA complex component FANCC and the downstream FANCD2 protein has been observed in the yeast two-hybrid system. Here, we demonstrate the ability of FANCE to mediate the interaction between FANCC and FANCD2 in the yeast three-hybrid system and confirm the FANCE-mediated association of FANCC with FANCD2 in human cells. A yeast two-hybrid system-based screen was devised to identify randomly mutagenized FANCE proteins capable of interaction with FANCC but not with FANCD2. Exogenous expression of these mutants in an FA-E cell line and subsequent evaluation of FANCD2 monoubiquitination and DNA cross-linker sensitivity indicated a critical role for the FANCE/FANCD2 interaction in maintaining FA pathway integrity. Three-hybrid experiments also demonstrated the ability of FANCE to mediate the interaction between FA core complex components FANCC and FANCF, indicating an additional role for FANCE in complex assembly. Thus, FANCE is shown to be a key mediator of protein interactions both in the architecture of the FA protein complex and in the connection of complex components to the putative downstream targets of complex activity.  相似文献   
28.
The toxicity of biomolecules obtained from sea anemones in vitro does not necessarily justify their function as toxins in the physiology of the anemone. That is why anatomical and physiological considerations must be taken into account in order to define their physiological role in the organism. In this work, antibodies generated to Sticholysin II, a cytolysin produced by the Caribbean Sea anemone Stichodactyla helianthus, are used as specific markers to explore the sites of production and storage of the cytolysin in the sea anemone. The immunoperoxidase staining developed gave specific dark-brown staining in tentacles and mesenteric filaments as well as in basitrichous nematocysts isolated from tentacles of S. helianthus. These results support the role of these proteins as toxins in the physiology of the anemone, especially in functions such as in predation, defense and digestion.  相似文献   
29.
30.
The family Endornaviridae infects diverse hosts, including plants, fungi, and oomycetes. Here we report for the first time the assembly of bell pepper endornavirus by next-generation sequencing of viral small RNA. Such a population of small RNA indicates the activation of the viral immunity silencing machinery by this cryptic virus, which probably encodes a novel silencing suppressor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号