首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7131篇
  免费   640篇
  国内免费   69篇
  2023年   51篇
  2022年   71篇
  2021年   210篇
  2020年   138篇
  2019年   186篇
  2018年   203篇
  2017年   211篇
  2016年   259篇
  2015年   442篇
  2014年   422篇
  2013年   554篇
  2012年   639篇
  2011年   578篇
  2010年   408篇
  2009年   363篇
  2008年   434篇
  2007年   375篇
  2006年   329篇
  2005年   286篇
  2004年   304篇
  2003年   228篇
  2002年   231篇
  2001年   72篇
  2000年   45篇
  1999年   55篇
  1998年   49篇
  1997年   45篇
  1996年   37篇
  1995年   37篇
  1994年   34篇
  1993年   40篇
  1992年   32篇
  1991年   31篇
  1990年   36篇
  1989年   36篇
  1988年   21篇
  1987年   21篇
  1986年   18篇
  1985年   27篇
  1984年   30篇
  1983年   19篇
  1982年   25篇
  1981年   18篇
  1980年   19篇
  1979年   16篇
  1978年   13篇
  1977年   12篇
  1976年   12篇
  1975年   12篇
  1973年   8篇
排序方式: 共有7840条查询结果,搜索用时 15 毫秒
41.
42.
43.
44.
45.
46.
47.
48.
At temperatures lower than 37°C, the ethanol inhibition constant (Ki) for growth or fermentation inrho + cells of theSaccharomyces cerevisiae strain S288C was always higher (1.1M) than inrho mutants (0.7M). At 37°C these differences disappeared, and both strains were equally inhibited by ethanol (Ki=0.7m). Mitochondrial activity can be inhibited by high ethanol concentration and temperature. In fact, the stronger inhibition by ethanol of therho + strain at 37°C was due to the fact that, under these conditions, this strain loses the advantage conferred by mitochondrial activity since the induction ofrho cells in the population is very high. This does not result in an increase in the frequency ofrho mutants because of the poor viability of these mutants in conditions of high temperature and ethanol. In consequence, S288C strain becomes as strongly inhibited by ethanol as therho mutant strains. Differences in viability were not related to the fatty acids and ergosterol composition of the strain. In the presence of ethanol, bothrho + andrho strains modified their lipids in the same way, but these changes did not improve their ethanol tolerance. They were not due to differences in adaptation to ethanol either, since after successive transfers in ethanol, growth () and fermentation () rates in therho mutants were increasingly inhibited with time, whereas in the S288C strain inhibition of and by ethanol remained unaltered. Rather,rho mutants are less viable thanrho + cells because of the inability of the former to respire. At 37°C the Ki increased to 0.9M ethanol either when mitochondrial from highly ethanol-tolerant wine yeasts were transferred torho mutants of the strain S288C or when the mitochondria of strain S288C were preadapted by growing the strain in glycerol instead of glucose before it was cultivated in ethanol.  相似文献   
49.
The use of nitrogen-fixing trees such as black alder (Alnus glutinosa L. Gaertn.) as forest silvicultural tools has recently been recognized. The potential benefit of black alder in silvicultural practices may be reduced by nitrate fertilization. Fifteen-month-old, nodulated, black alder rooted cuttings were fertilized for 6 days with 0, 7.5 or 15 mM NO3 to determine the influence of nitrate on acetylene reduction, nodule respiration and net photosynthesis. Acetylene reduction, net photosynthesis and nodule respiration were measured on the second, fourth and sixth days of nitrate application. Nitrate treatment significantly reduced acetylene reduction and nodule respiration by day 4. Acetylene reduction was 75% lower and nodule respiration 36% lower for the 15 mM NO3 treatment when compared to that of the control treatment. By day 6, net photosynthesis and nodule respiration were significantly reduced by 29 and 59%, respectively, for seedlings treated with 15 mM NO3. This study suggests that nitrate fertilization has a profound influence on nitrogenase activity and that nitrogen-fixing tree species may respond to nitrate fertilization by shifting photosynthetic rates.  相似文献   
50.
The respective effects of meristem temperature, vapour pressuredeficit (VPD) and photosynthetic photon flux density (PPFD)on leaf elongation rate (LER) of maize, in the absence of waterdeficit in the soil have been quantified. This analysis wascarried out in a series of field experiments in northern andsouthern France over several seasons and years, and in growthchamber experiments. LER was measured with 10 min steps, togetherwith meristem temperature, VPD and PPFD at leaf level in threetypes of experiments: in growth chamber experiments with stepsin PPFD or VPD at constant meristem temperature, in growth chamberexperiments with several combinations of constant, but contrasting,PPFDs, VPDs and meristem temperatures, and in the field withfluctuating conditions, (i) When evaporative demand was low(night or day with low air VPD), LER was only linked to meristemtemperature, regardless of other climatic conditions, (ii) Lighthad no effect per se on LER in the range from 0 to 1500 molm–2 s–1 for time-scales longer than 2 h, providedthat its indirect effects on meristem temperature and on evaporativedemand were corrected (in the growth chamber) or taken intoaccount (in the field), and provided that cumulated PPFD overa weekly time-scale was compatible with field conditions, (iii)Evaporative demand sensed by growing leaves, as estimated bymeristem-to-air vapour pressure difference, markedly affectedLER in the range from 1–4 kPa, at all time-scales understudy, with a unique relationship in the growth chamber (constantconditions) and in the field (fluctuating conditions). Thiseffect was only observed when PPFD was high enough for stomatato open. The negative effect of evaporative demand on LER wasprobably not due to long distance root-to-shoot signalling,since soil was wet, calculated root water potential remainedclose to 0 MPa and concentration of ABA in the xylem sap wasvery low. Therefore, it is proposed to model maize LER witha two-step process, involving the calculation of the maximumLER at a given meristem temperature and then the calculationof the reduction in LER due to evaporative demand. Joint analysisof the whole set of data by using the two equations yieldeda r2 of 0.75. This two-step process would be more accurate thanthe provision of LER from temperature only in cases where airVPD frequently exceeds 2 kPa. Key words: Leaf growth, light, evaporative demand, temperature, thermal time, water deficit, ABA, Zea mays L.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号