首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   71篇
  767篇
  2022年   6篇
  2021年   8篇
  2016年   8篇
  2015年   13篇
  2014年   24篇
  2013年   16篇
  2012年   49篇
  2011年   23篇
  2010年   18篇
  2009年   15篇
  2008年   30篇
  2007年   24篇
  2006年   19篇
  2005年   29篇
  2004年   27篇
  2003年   20篇
  2002年   28篇
  2001年   24篇
  2000年   32篇
  1999年   24篇
  1998年   13篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   10篇
  1992年   16篇
  1991年   8篇
  1990年   11篇
  1989年   12篇
  1988年   6篇
  1987年   9篇
  1986年   7篇
  1985年   8篇
  1984年   12篇
  1983年   6篇
  1982年   6篇
  1981年   5篇
  1980年   11篇
  1979年   9篇
  1977年   8篇
  1976年   7篇
  1974年   5篇
  1973年   7篇
  1972年   5篇
  1970年   8篇
  1969年   6篇
  1962年   4篇
  1941年   4篇
  1935年   5篇
排序方式: 共有767条查询结果,搜索用时 0 毫秒
141.
Hepatitis C virus (HCV) infection is a major public health problem, affecting an estimated 3% of the world's population, and over 10% in some countries. Infection in most cases becomes persistent, and can lead to hepatic inflammation, fibrosis and liver failure. The T lymphocyte reponse, in particular that mediated by cytotoxic T lymphocytes (CTLs), is likely to be involved in determining the outcome of infection, although its overall role is not clear. The use of major histocompatibility complex (MHC) class I peptide tetrameric complexes (tetramers) to study antiviral CTL responses has revolutionized our approach to the study of human infection. We have used a panel of MHC class I tetramers to analyse immune responses in HCV-infected individuals at various stages of disease. We find that the CTL response against HCV is vigorous in its early phases but dwindles over time both in terms of lymphocyte number and function. A number of potential explanations for this 'CTL failure' are discussed.  相似文献   
142.
Human impact diminishes seedling species richness in Kakamega Forest, Kenya   总被引:1,自引:0,他引:1  
Anthropogenic forest fragmentation and other kinds of human disturbance, such as selective logging, can reduce the diversity of plant and animal species. To evaluate the impact of fragmentation and small-scale disturbance on forest regeneration, we assessed species richness and total abundance of adult trees in comparison with seedlings in the heavily fragmented and disturbed Kakamega Forest, western Kenya. In nine differently disturbed 1-ha study blocks distributed across the main forest and fragments, we mapped all trees >10 cm in diameter at breast height. Additionally, we established ninety 1-m2 seedling plots within these 1-ha study blocks which were monitored over 2.5 years. We recorded altogether 74 species of adult trees (30–43 per block) and 64 seedling species (24–41 per block). Neither fragmentation nor small-scale disturbance had an impact on adult tree species richness or total tree abundance. Yet, fragmentation and especially small-scale disturbance significantly reduced seedling species richness, particularly of late-successional species. While human impact did not affect diversity of adults, the impoverished species richness of seedlings suggests a reduced potential for regeneration and a loss of tree diversity in the long-term.  相似文献   
143.
Evidence that brain edema and aquaporin-4 (AQP4) water channels have roles in experimental binge ethanol-induced neurodegeneration has stimulated interest in swelling/edema-linked neuroinflammatory pathways leading to oxidative stress. We report here that neurotoxic binge ethanol exposure produces comparable significant effects in vivo and in vitro on adult rat brain levels of AQP4 as well as neuroinflammation-linked enzymes: key phospholipase A2 (PLA2) family members and poly (ADP-ribose) polymerase-1 (PARP-1). In adult male rats, repetitive ethanol intoxication (3 gavages/d for 4 d, ∼9 g/kg/d, achieving blood ethanol levels ∼375 mg/dl; “Majchrowicz” model) significantly increased AQP4, Ca+2-dependent PLA2 GIVA (cPLA2), phospho-cPLA2 GIVA (p-cPLA2), secretory PLA2 GIIA (sPLA2) and PARP-1 in regions incurring extensive neurodegeneration in this model—hippocampus, entorhinal cortex, and olfactory bulb—but not in two regions typically lacking neurodamage, frontal cortex and cerebellum. Also, ethanol reduced hippocampal Ca+2-independent PLA2 GVIA (iPLA2) levels and increased brain “oxidative stress footprints” (4-hydroxynonenal-adducted proteins). For in vitro studies, organotypic cultures of rat hippocampal-entorhinocortical slices of adult age (∼60 d) were ethanol-binged (100 mM or ∼450 mg/dl) for 4 d, which augments AQP4 and causes neurodegeneration (Collins et al. 2013). Reproducing the in vivo results, cPLA2, p-cPLA2, sPLA2 and PARP-1 were significantly elevated while iPLA2 was decreased. Furthermore, supplementation with docosahexaenoic acid (DHA; 22:6n-3), known to quell AQP4 and neurodegeneration in ethanol-treated slices, blocked PARP-1 and PLA2 changes while counteracting endogenous DHA reduction and increases in oxidative stress footprints (3-nitrotyrosinated proteins). Notably, the PARP-1 inhibitor PJ-34 suppressed binge ethanol-dependent neurodegeneration, indicating PARP upstream involvement. The results with corresponding models support involvement of AQP4- and PLA2-associated neuroinflammatory pro-oxidative pathways in the neurodamage, with potential regulation by PARP-1 as well. Furthermore, DHA emerges as an effective inhibitor of these binge ethanol-dependent neuroinflammatory pathways as well as associated neurodegeneration in adult-age brain.  相似文献   
144.
145.
On the Other "Phylogenetic Systematics"   总被引:6,自引:1,他引:5  
De Queiroz and Gauthier, in a serial paper, argue that biological taxonomy is in a sad state, because taxonomists harbor "widely held belief" systems that are archaic and insufficient for modern classification, and that the bulk of practicing taxonomists are essentialists. Their paper argues for the scrapping of the current system of nomenclature, but fails to provide specific rules for the new "Phylogenetic Systematics"—instead we have been presented with a vague and sketchy manifesto based upon the assertion that "clades are individuals" and therefore must be pointed at with proper names, rather than diagnosed by synapomorphies. They claim greater stability for "node pointing," yet even their own examples show that the opposite is true, and their node pointing system is only more stable in a purely metaphysical sense detached from characters, evidence, usage of names, and composition of groups. We will show that the node pointing system is actually far LESS stable than the existing Linnaean System when stability is measured by the rational method of determining the net change in taxa (species) included in a particular group under different classifications.  相似文献   
146.
In arterial myocytes the Ca(2+) mobilizing messenger NAADP evokes spatially restricted Ca(2+) bursts from a lysosome-related store that are subsequently amplified into global Ca(2+) waves by Ca(2+)-induced Ca(2+)-release from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs). Lysosomes facilitate this process by forming clusters that co-localize with a subpopulation of RyRs on the SR. We determine here whether RyR subtypes 1, 2 or 3 selectively co-localize with lysosomal clusters in pulmonary arterial myocytes using affinity purified specific antibodies. The density of: (1) alphalgP120 labelling, a lysosome-specific protein, in the perinuclear region of the cell (within 1.5mum of the nucleus) was approximately 4-fold greater than in the sub-plasmalemmal (within 1.5mum of the plasma membrane) and approximately 2-fold greater than in the extra-perinuclear (remainder) regions; (2) RyR3 labelling within the perinuclear region was approximately 4- and approximately 14-fold greater than that in the extra-perinuclear and sub-plasmalemmal regions, and approximately 2-fold greater than that for either RyR1 or RyR2; (3) despite there being no difference in the overall densities of fluorescent labelling of lysosomes and RyR subtypes between cells, co-localization with alphalgp120 labelling within the perinuclear region was approximately 2-fold greater for RyR3 than for RyR2 or RyR1; (4) co-localization between alphalgp120 and each RyR subtype declined markedly outside the perinuclear region. Furthermore, selective block of RyR3 and RyR1 with dantrolene (30muM) abolished global Ca(2+) waves but not Ca(2+) bursts in response to intracellular dialysis of NAADP (10nM). We conclude that a subpopulation of lysosomes cluster in the perinuclear region of the cell and form junctions with SR containing a high density of RyR3 to comprise a trigger zone for Ca(2+) signalling by NAADP.  相似文献   
147.
Fossilized flowers and fruits from the Upper Cretaceous (Turonian, ca. 90 million years [my] before present) Raritan Formation of New Jersey are described as the new genus Divisestylus with two species, D. brevistamineus and D. longistamineus. The fossils are fusainized and three-dimensionally preserved. Morphological characteristics suggest affinities with extant Saxifragaceae and Iteaceae, two closely related families in Saxifragales. Similarities include a pentamerous perianth, calyx fused below into a hypanthium with free sepal lobes above, haplostemonous androecium with stamens situated opposite the calyx lobes, inferior ovary, bicarpellate gynoecium, numerous ovules on axile placentas, conspicuous intrastaminal nectary ring, and capsulate fruit opening apically. The unique fusion of the gynoecium, with carpels and stigmas fused but styles free, indicates closer affinities with extant Iteaceae, whereas other characters, such as basifixed anthers in D. brevistamineus, tricolpate and striate pollen grains, and anomocytic stomata, indicate closer affinities to Saxifragaceae. Cladistic analyses utilizing molecular data from a previously published analysis and morphological data as well as morphological data alone demonstrate the fossils share a more recent common ancestor with Iteaceae than Saxifragaceae, thereby making Divisestylus the oldest fossils known with clear affinities to Iteaceae.  相似文献   
148.
149.
Pyruvate decarboxylase (PDC, EC 4.1.1.1) is a thiamin diphosphate-dependent enzyme about which there is a large body of structural and functional information. The active site contains several absolutely conserved ionizable groups and all of these appear to be important, as judged by the fact that mutation diminishes or abolishes catalytic activity. Previously we have shown [Schenk, G., Leeper, F.J., England, R., Nixon, P.F. & Duggleby, R.G. (1997) Eur. J. Biochem. 248, 63-71] that the activity is pH-dependent due to changes in kcat/Km while kcat itself is unaffected by pH. The effect on kcat/Km is determined by a group with a pKa of 6.45; the identity of this group has not been determined, although H113 is a possible candidate. Here we mutate five crucial residues in the active site with ionizable side-chains (D27, E50, H113, H114 and E473) in turn, to residues that are nonionizable or should have a substantially altered pKa. Each protein was purified and characterized kinetically. Unexpectedly, the pH-dependence of kcat/Km is largely unaffected in all mutants, ruling out the possibility that any of these five residues is responsible for the observed pKa of 6.45. We conjecture that the kcat/Km profile reflects the protonation of an alcoholate anion intermediate of the catalytic cycle.  相似文献   
150.
Cystatin C (CysC) expression in the brain is elevated in human patients with epilepsy, in animal models of neurodegenerative conditions, and in response to injury, but whether up-regulated CysC expression is a manifestation of neurodegeneration or a cellular repair response is not understood. This study demonstrates that human CysC is neuroprotective in cultures exposed to cytotoxic challenges, including nutritional-deprivation, colchicine, staurosporine, and oxidative stress. While CysC is a cysteine protease inhibitor, cathepsin B inhibition was not required for the neuroprotective action of CysC. Cells responded to CysC by inducing fully functional autophagy via the mTOR pathway, leading to enhanced proteolytic clearance of autophagy substrates by lysosomes. Neuroprotective effects of CysC were prevented by inhibiting autophagy with beclin 1 siRNA or 3-methyladenine. Our findings show that CysC plays a protective role under conditions of neuronal challenge by inducing autophagy via mTOR inhibition and are consistent with CysC being neuroprotective in neurodegenerative diseases. Thus, modulation of CysC expression has therapeutic implications for stroke, Alzheimer''s disease, and other neurodegenerative disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号