首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2152篇
  免费   204篇
  2356篇
  2022年   36篇
  2021年   43篇
  2019年   29篇
  2018年   43篇
  2017年   38篇
  2016年   47篇
  2015年   77篇
  2014年   69篇
  2013年   95篇
  2012年   144篇
  2011年   123篇
  2010年   87篇
  2009年   62篇
  2008年   87篇
  2007年   78篇
  2006年   84篇
  2005年   69篇
  2004年   63篇
  2003年   68篇
  2002年   60篇
  2001年   49篇
  2000年   46篇
  1999年   41篇
  1998年   25篇
  1997年   18篇
  1996年   16篇
  1995年   23篇
  1994年   21篇
  1993年   14篇
  1992年   35篇
  1991年   38篇
  1990年   41篇
  1989年   33篇
  1988年   50篇
  1987年   34篇
  1986年   27篇
  1985年   37篇
  1984年   28篇
  1983年   26篇
  1982年   24篇
  1981年   19篇
  1980年   15篇
  1979年   25篇
  1977年   19篇
  1976年   16篇
  1975年   27篇
  1974年   31篇
  1973年   27篇
  1972年   17篇
  1968年   16篇
排序方式: 共有2356条查询结果,搜索用时 0 毫秒
61.
Maintenance and deployment of the immune system are costly and are hence predicted to trade‐off with other resource‐demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes—I (Infection with Pseudomonas entomophila), S (Sham‐infection with MgSO4), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade‐offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade‐offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life‐history trade‐offs might play little role in maintaining variation in immunity.  相似文献   
62.
63.
Mixed lineage kinase 7 (MLK7) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates the pro-apoptotic signaling pathways p38 and JNK. A library of potential kinase inhibitors was screened, and a series of dihydropyrrolopyrazole quinolines was identified as highly potent inhibitors of MLK7 in vitro catalytic activity. Of this series, an aryl-substituted dihydropyrrolopyrazole quinoline (DHP-2) demonstrated an IC50 of 70 nM for inhibition of pJNK formation in COS-7 cell MLK7/JNK co-transfection assays. In stimulated cells, DHP-2 at 200 nM or MLK7 small interfering RNA completely blocked anisomycin and UV induced but had no effect on interleukin-1beta or tumor necrosis factor-alpha-induced p38 and JNK activation. Additionally, the compound blocked anisomycin and UV-induced apoptosis in COS-7 cells. Heart tissue homogenates from MLK7 transgenic mice treated with DHP-2 at 30 mg/kg had reduced JNK and p38 activation with no apparent effect on ERK activation, demonstrating that this compound can be used to block MLK7-driven MAPK pathway activation in vivo. Taken together, these data demonstrate that MLK7 is the MAPKKK required for modulation of the stress-activated MAPKs downstream of anisomycin and UV stimulation and that DHP-2 can be used to block MLK7 pathway activation in cells as well as in vivo.  相似文献   
64.
The bacterial second messenger bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a central regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular mechanism of autoinhibition and activation of LapD based on structure-function analyses and crystal structures of the entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including many free-living and pathogenic species.  相似文献   
65.
The extent of cell-cycle delay and the frequency of aberrant metaphases induced by bleomycin (BLM) and X-rays have been compared at doses which produce similar frequencies of chromosome aberrations by the 2 clastogenic agents (BLM, 40 micrograms/ml and X-rays, 2 Gy) in muntjac lymphocytes. The frequency of aberrant metaphases was low in BLM-treated cells; however, the number of aberrations per metaphase was higher than in cells exposed to X-rays. Thus in contrast to their uniform sensitivity to X-rays, the lymphocytes showed differential sensitivity to BLM. This might be due to differences among the cells in their uptake of BLM and/or its action on the nuclear membrane-DNA complex. In spite of the total number of chromosome aberrations being similar to that induced by X-rays, BLM did not induce a significant delay in cell-cycle progression as observed in the case of X-rays. A possible explanation could be that the DNA damages being limited to fewer cells than in the case of X-irradiation, the BLM-treated cultures had more normal cells allowing faster progression and/or unlike X-rays BLM may not be causing other cellular damages in addition to DNA breaks.  相似文献   
66.
The present study investigated the chemopreventive effect of dietary fish oil (Maxepa), rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on induction of apoptosis in mammary carcinogenesis model. Mammary carcinogenesis was initiated by a single, tail vein injection of 7,12-dimethylbenz(alpha)anthracene (DMBA) (0.5mg/0.2ml corn oil/100g body weight) at 7 weeks of animal age. Ninety female Sprague-Dawley rats were divided into two parts: part one was used for histology and immunohistochemical study and part two for morphological analysis. Each part consists of three experimental groups having 15 animals, i.e., Group A (DMBA control), Group B (DMBA+fish oil) and Group C (DMBA+corn oil). Rats were fed either fish oil or corn oil (0.5ml/day/rat) by oral gavage, 2 weeks prior to DMBA injection. Treatment was continued 25 weeks, studying histopathology, expression of Bax and Bcl-2 proteins by immunohistochemistry and apoptosis by TUNEL assay and morphological study at 36 weeks. Results showed that the fish oil-treated group exhibited a substantial increase in Bax (p<0.05) immunolabelling and a reduction of Bcl-2 immunopositivity (p<0.05), and increased TUNEL-positive apoptotic cells (p<0.05); however, corn oil treatment did not show these beneficial effects toward mammary preneoplasia. We conclude that fish oil has the potential to play a significant role in limiting mammary tumourigenesis in vivo.  相似文献   
67.
Phenotypically distinct clinical isolates of Mycobacterium tuberculosis are capable of altering the balance that exists between the pathogen and human host and ultimately the outcome of infection. This study has identified two M. tuberculosis strains (i.e. HN885 and HN1554) among a bank of clinical isolates with a striking defect in phagocytosis by primary human macrophages when compared with strain Erdman, a commonly used laboratory strain for studies of pathogenesis. Mass spectrometry in conjunction with NMR studies unequivocally confirmed that both HN885 and HN1554 contain truncated and more branched forms of mannose-capped lipoarabinomannan (ManLAM) with a marked reduction of their linear arabinan (corresponding mainly to the inner Araf-alpha(1-->5)-Araf unit) and mannan (with fewer 6-Manp residues and more substitutions in the linear Manp-alpha(1-->6)-Manp unit) domains. The truncation in the ManLAM molecules produced by strains HN885 and HN1554 led to a significant reduction in their surface availability. In addition, there was a marked reduction of higher order phosphatidyl-myo-inositol mannosides and the presence of dimycocerosates, triglycerides, and phenolic glycolipid in their cell envelope. Less exposed ManLAM and reduced higher order phosphatidyl-myo-inositol mannosides in strains HN885 and HN1554 resulted in their low association with the macrophage mannose receptor. Despite reduced phagocytosis, ingested bacilli replicated at a fast rate following serum opsonization. Our results provide evidence that the clinical spectrum of tuberculosis may be dictated not only by the host but also by the amounts and ratios of surface exposed mycobacterial adherence factors defined by strain genotype.  相似文献   
68.
69.
In the mycobacterial plasmid pAL5000 replication region, the replication genes repA and repB are organized in an operon. Earlier, a RepB-dependent origin binding activity was detected in Escherichia coli cells expressing the repA-repB operon. This activity was maximal when expression of the two genes was coupled (A. Basu, M. Chawla-Sarkar, S. Chakrabarti, and S. K. Das Gupta, J. Bacteriol. 184:2204-2214, 2002). In this study we have shown that translational coupling makes a significant difference in the structure and function of RepB. When repB expression was coupled to repA, the polypeptide folded into an active structure (referred to as RepB*), which possessed higher helical content than RepB expressed independently. RepB* could also be distinguished from the less active RepB on the basis of sensitivity to OmpT, an outer membrane protease of E. coli: RepB* was sensitive to the protease, whereas RepB was resistant. Similar conformational differences between RepB* and RepB could be observed when repA was replaced with an unrelated gene, malE (encoding maltose binding protein). These results show that translational coupling of repB to an upstream gene is necessary for better folding and origin binding activity. It is speculated that in coupled systems where translation machinery is passed on from the upstream to the downstream open reading frame, cotranslational folding of the polypeptide expressed from the downstream open reading frame is enhanced due to increased folding competence of translationally primed ribosomes.  相似文献   
70.
Advances in computational methods that allow for exploration of the combinatorial mutation space are needed to realize the potential of synthetic biology based strain engineering efforts. Here, we present Constrictor, a computational framework that uses flux balance analysis (FBA) to analyze inhibitory effects of genetic mutations on the performance of biochemical networks. Constrictor identifies engineering interventions by classifying the reactions in the metabolic model depending on the extent to which their flux must be decreased to achieve the overproduction target. The optimal inhibition of various reaction pathways is determined by restricting the flux through targeted reactions below the steady state levels of a baseline strain. Constrictor generates unique in silico strains, each representing an “expression state”, or a combination of gene expression levels required to achieve the overproduction target. The Constrictor framework is demonstrated by studying overproduction of ethylene in Escherichia coli network models iAF1260 and iJO1366 through the addition of the heterologous ethylene-forming enzyme from Pseudomonas syringae. Targeting individual reactions as well as combinations of reactions reveals in silico mutants that are predicted to have as high as 25% greater theoretical ethylene yields than the baseline strain during simulated exponential growth. Altering the degree of restriction reveals a large distribution of ethylene yields, while analysis of the expression states that return lower yields provides insight into system bottlenecks. Finally, we demonstrate the ability of Constrictor to scan networks and provide targets for a range of possible products. Constrictor is an adaptable technique that can be used to generate and analyze disparate populations of in silico mutants, select gene expression levels and provide non-intuitive strategies for metabolic engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号