首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2856篇
  免费   211篇
  国内免费   206篇
  3273篇
  2024年   5篇
  2023年   44篇
  2022年   119篇
  2021年   192篇
  2020年   109篇
  2019年   129篇
  2018年   120篇
  2017年   116篇
  2016年   155篇
  2015年   196篇
  2014年   211篇
  2013年   248篇
  2012年   271篇
  2011年   244篇
  2010年   148篇
  2009年   119篇
  2008年   148篇
  2007年   113篇
  2006年   89篇
  2005年   69篇
  2004年   64篇
  2003年   48篇
  2002年   42篇
  2001年   32篇
  2000年   25篇
  1999年   29篇
  1998年   18篇
  1997年   20篇
  1996年   24篇
  1995年   12篇
  1994年   20篇
  1993年   9篇
  1992年   11篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1968年   3篇
排序方式: 共有3273条查询结果,搜索用时 31 毫秒
991.
Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system.  相似文献   
992.
993.
We examined the growth, photosynthetic parameters, initial and total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, the relative expression of rbcL, rbcS, and rca gene, and nitrogen metabolism of cucumber (Cucumis sativus L. cv. Jinchun No.2, CS) plants grafted onto figleaf gourd (Cucurbita ficifolia Bouché, CF) and pumpkin (Cucurbita moschata Duch. cv. Chaojiquanwang, CM) rootstocks. Growth inhibition under salt stress (90 mM NaCl) was characterized by the irreversible inhibition of CO2 assimilation in the cucumber plants grafted onto cucumber rootstocks (CS/CS). In contrast, this effect was significantly alleviated by grafting the cucumber plants onto the CF and CM roots (CS/CF, CS/CM). Under NaCl stress, the CS/CF and CS/CM plants exhibited higher photosynthetic activity, higher initial and total Rubisco activity, and higher Rubisco-related gene expression than the CS/CS plants. Salinity resulted in a lesser increase in nitrate content and decrease in free amino acid content in the CS/CF and the CS/CM plants compared with the CS/CS plants. Accordingly, the activity of nitrate reductase, glutamine synthetase, and glutamate synthase decreased significantly, especially in the CS/CS plants. These results suggest that grafting cucumber plants onto salt-tolerant rootstocks enhances Rubisco activity and the expression of Rubisco-related genes by effectively accelerating nitrate transformation into amino acids under NaCl stress, thereby improving the photosynthetic performance of cucumber leaves.  相似文献   
994.
The DNA double-strand break (DSB), arising from exposure to ionizing radiation or various chemotherapeutic agents or from replication fork collapse, is among the most dangerous of chromosomal lesions. DSBs are highly cytotoxic and can lead to translocations, deletions, duplications, or mutations if mishandled. DSBs are eliminated by either homologous recombination (HR), which uses a homologous template to guide accurate repair, or by nonhomologous end joining (NHEJ), which simply rejoins the two broken ends after damaged nucleotides have been removed. HR generates error-free repair products and is also required for generating chromosome arm crossovers between homologous chromosomes in meiotic cells. The HR reaction includes several distinct steps: resection of DNA ends, homologous DNA pairing, DNA synthesis, and processing of HR intermediates. Each occurs in a highly regulated fashion utilizing multiple protein factors. These steps are being elucidated using a combination of genetic tools, cell-based assays, and in vitro reconstitution with highly purified HR proteins. In this review, we summarize contributions from our laboratory at Yale University in understanding HR mechanisms in eukaryotic cells.  相似文献   
995.
996.
Recreational big game hunters make a significant contribution to conservation through kills of deer, pigs, chamois and tahr. New opportunities for managing recreational hunting through the proposed Game Animal Council underscore the need to understand the implications of potential changes in recreational hunting participation and harvests. Based on a survey of hunters' recall over a year, hunters averaged 15.63 (SEM = 0.58) big game hunts per year, spending 30.53 (SEM = 0.85) days hunting and killing 8.92 (SEM = 0.69) big game animals. Hunters commonly targeted several species on a single hunt, with highly skewed distributions for hunter effort and kills. Mean monthly expenditure on big game hunting items was $296.78 (SEM = $8.95). Results demonstrate that big game hunting is a significant activity in New Zealand, but this varies considerably among hunters with a small number responsible for the vast majority of kills. These are important considerations for future big game hunting management.  相似文献   
997.
Activation of protein kinase C (PKC) is a critical intracellular signaling triggered by ischemic preconditioning (IPC), but the precise mechanisms underlying the actions of PKC in IPC-mediated cardioprotection remain unclear. Here, we investigated the role of PKC activation on the antioxidant activity by IPC in rabbit hearts. Isolated rabbit hearts were subjected to 60?min of global ischemia by cold cardioplegic arrest (4?°C) and 60?min of reperfusion (37?°C). IPC was induced by three cycles of 2-min ischemia following 3?min of reperfusion (37?°C) before cardioplegic arrest. IPC resulted in a better recovery of mechanical function, increased tissue reduced glutathione-to-oxidized glutathione ratio (GSH/GSSG), superoxide dismutase and catalase content, and decreased tissue malondialdehyde (MDA) content compared to control hearts subjected to 60?min of cardioplegic ischemia and 60?min of reperfusion. IPC also significantly induced activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the inductions of antioxidant genes heme oxygenase-1 (HO-1) and manganese superoxide dismutase (MnSOD). Injection of phorbol 12-myristate 13 acetate, an activator of PKC, before cardioplegic ischemia induced translocation of PKC-?? and -?? isoforms to membrane fraction, nuclear accumulation of Nrf2, and conferred cardioprotection similar to IPC. Polymyxin B, an inhibitor of PKC, blocked the membrane translocation of PKC-?? and -?? during IPC, inhibited Nrf2 nuclear accumulation, and significantly diminished the IPC-induced cardioprotection when administrated before IPC. These results indicate that the activation of PKC induces the translocation of Nrf2 and the enhancement of endogenous antioxidant defenses in the IPC hearts and suggest that PKC may target Nrf2 to confer cardioprotection.  相似文献   
998.
Since diethylstilbestrol (DES) interrupts endocrine systems and generates reproductive abnormalities in both wildlife and human beings, methods to remove DES from the environments are urgently recommended. In this study, bacterial strain J51 was isolated and tested to effectively degrade DES. J51 was identified as Pseudomonas sp. based on its nucleotide sequence of 16S rRNA. The quinoprotein alcohol dehydrogenase and isocitrate lyase were identified to be involved in DES degradation by MALDI–TOF–TOF MS/MS analysis. In the presence of 40 mg/l DES, increase of the genes encoding quinoprotein alcohol dehydrogenase and isocitrate lyase in both RNA and protein levels was determined. The HPLC/MS analysis showed that DES was hydrolyzed to a major degrading metabolite DES-4-semiquinone. It was the first time to demonstrate the characteristics of DES degradation by specific bacterial strain and the higher degradation efficiency indicated the potential application of Pseudomonas sp. strain J51 in the treatment of DES-contaminated freshwater and seawater environments.  相似文献   
999.
Nikkomycins and gougerotin are peptidyl nucleoside antibiotics with broad biological activities. The nikkomycin biosynthetic gene cluster comprises one pathway-specific regulatory gene (sanG) and 21 structural genes, whereas the gene cluster for gougerotin biosynthesis includes one putative regulatory gene, one major facilitator superfamily transporter gene, and 13 structural genes. In the present study, we introduced sanG driven by six different promoters into Streptomyces ansochromogenes TH322. Nikkomycin production was increased significantly with the highest increase in engineered strain harboring hrdB promoter-driven sanG. In the meantime, we replaced the native promoter of key structural genes in the gougerotin (gou) gene cluster with the hrdB promoters. The heterologous producer Streptomyces coelicolor M1146 harboring the modified gene cluster produced gougerotin up to 10-fold more than strains carrying the unmodified cluster. Therefore, genetic manipulations of genes involved in antibiotics biosynthesis with the constitutive hrdB promoter present a robust, easy-to-use system generally useful for the improvement of antibiotics production in Streptomyces.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号