首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   11篇
  2021年   3篇
  2020年   1篇
  2018年   3篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   9篇
  2011年   5篇
  2010年   11篇
  2009年   5篇
  2008年   7篇
  2007年   11篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   8篇
  2002年   4篇
  2001年   3篇
  1999年   5篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1977年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
61.
62.
A major Erwinia amylovora outer-membrane protein (Omp-EA) and the gene encoding for this protein (omp-EA) were isolated and characterized. The native Omp-EA protein forms a trimeric structure of approximately 114 kDa. This protein demonstrated high resistance to detergents such as SDS and octyl-glucopyranoside, but disaggregated to monomers with a molecular weight (MW) of approximately 39 kDa after heating at 95°C for 10 minutes in sample buffer. The pore-forming ability of the oligomeric Omp-EA was determined by the liposome swelling assay, demonstrating that the oligomeric protein formed nonspecific channels with an exclusion limit of approximately 660 Da. On dissociation, the monomers did not exhibit pore-forming ability. The omp-EA gene was cloned and sequenced (GenBank Accession No. DQ184680). Sequence analysis revealed an open reading frame of 1152 bases. The deduced amino-acid sequence had 383 amino acids. The mature protein consisted of 362 amino acids and had a calculated MW of 39,210 Da. Multiple-sequence alignment of Omp-EA with other porins from the Enterobacteriaceae family revealed 51% to 63% identity. The first 16 amino acids from the N-terminal exhibited the highest identity (100%) to the porins OmpC, OmpF, and PhoE of Escherichia coli. Two methods were used to predict the secondary structure: APSSP2 and Hidden and Markov’s model. The monomers of Omp-EA porin presented a topology of 16 transmembranal β-strands. The area of the loops between the β -strands was proposed. It is suggested that further research on the porin and its loops may be important for understanding the mechanism of E. amylovor to invade plant tissues.  相似文献   
63.
A novel leucine aminopeptidase was purified from a Bacillus thuringiensis israelensis (Bti) culture. The purification stages included heating the concentrated supernatant to 65°C for 90 min, anion-exchange chromatography by DEAE cellulose, and hydrophobic chromatography by phenyl Sepharose. The specific activity of leucine aminopeptidase after the hydrophobic chromatography increased by 215.5-fold and the yield was 16%. The molecular weight of the active enzyme was 59 kDa. Mass spectrometry analysis of the 59-kDa leucine aminopeptidase revealed that this protein has at least 41% homology with the cytosol leucine aminopeptidase produced by Bacillus cereus. Maximal leucine aminopeptidase activity occurred at 65°C, pH 10 toward leucine as the amino acid terminus. The enzyme was strongly inhibited by bestatin, dithiothreitol, and 1,10-phenanthroline, indicating that the enzyme might be considered as a metallo-aminopeptidase that has disulfide bonds at the catalytic site or at a region that influences its configuration. Examination of the purified leucine aminopeptidase’s effect on the activation of the protoxin Cyt1Aa from Bti revealed that when it acts synergistically with Bti endogenous proteases, it has only a minor role in the processing of Cyt1Aa into an active toxin.  相似文献   
64.
65.
66.
Abstract The mechanism of inactivation of Staphylococcas aureus cells by hemin is described. Protection experiments by sulfhydryl reagents such as cysteine, mercaptoethanol, glutathione or thioglycolate in their reduced form prevent S. aureus bacteria from inactivation by hemin (1.5 × 10−5 M). The treatment of bacteria by hemin in the presence of one of those reagents (1 × 10−2 M) showed that the growth rate and viability of the culture remained unchaged. On the other hand sulfhydryl reagents did not prevent the binding of hemin to the bacteria. When cysteine or glutathione were introduced to a culture after exposure to hemin it could neither reverse the damage done to the cells nor shorten the time of the culture's recovery. Another type of protection was obtained by addition of serum albumin which prevented hemin molecules from binding to the bacterial envelopes. Furthermore, when albumin was introduced after the bacteria were treated by hemin it prevented further damage to the survivors and thus shortened the time required for recovery. None of the singlet oxygen quenchers or hydroxyl radical scavengers could protect the bacteria from hemin inactivation. The mechanism by which hemin affects S. aureus is assumed to be by oxidizing a major system within the cell.  相似文献   
67.
Formaldehyde (FA)-containing indoor air has a negative effect on human health and should be removed by intensive ventilation or by catalytic conversion to non-toxic products. FA can be oxidized by alcohol oxidase (AOX) taking part in methanol metabolism of methylotrophic yeasts. In the present work, AOX isolated from a Hansenula polymorpha C-105 mutant (gcr1 catX) overproducing this enzyme in glucose medium, was tested for its ability to oxidize airborne FA. A continuous fluidized bed bioreactor (FBBR) was designed to enable an effective bioconversion of airborne FA by AOX or by permeabilized mutant H. polymorpha C-105 cells immobilized in calcium alginate beads. The immobilized AOX having a specific activity of 6-8 U mg?1 protein was shown to preserve 85-90% of the initial activity. The catalytic parameters of the immobilized enzyme were practically the same as for the free enzyme (k(cat)/K(m) was 2.35×103 M?1 s?1 vs 2.89×103 M?1 s?1, respectively). The results showed that upon bubbling of air containing from 0.3 up to 18.5 ppm FA through immobilized AOX in the range of 1.3-26.6 U g?1 of the gel resulted in essential decrease of FA concentration in the outlet gas phase (less than 0.02-0.03 ppm, i.e. 10-fold less than the threshold limit value). It was also demonstrated that a FBBR with immobilized permeabilized C-105 cells provided more than 90% elimination of airborne FA. The process was monitored by a specially constructed enzymatic amperometric biosensor based on FA oxidation by NAD+ and glutathione-dependent formaldehyde dehydrogenase from the recombinant H. polymorpha Tf 11-6 strain.  相似文献   
68.

Background

Identification of genes responsible for medically important traits is a major challenge in human genetics. Due to the genetic heterogeneity of hearing loss, targeted DNA capture and massively parallel sequencing are ideal tools to address this challenge. Our subjects for genome analysis are Israeli Jewish and Palestinian Arab families with hearing loss that varies in mode of inheritance and severity.

Results

A custom 1.46 MB design of cRNA oligonucleotides was constructed containing 246 genes responsible for either human or mouse deafness. Paired-end libraries were prepared from 11 probands and bar-coded multiplexed samples were sequenced to high depth of coverage. Rare single base pair and indel variants were identified by filtering sequence reads against polymorphisms in dbSNP132 and the 1000 Genomes Project. We identified deleterious mutations in CDH23, MYO15A, TECTA, TMC1, and WFS1. Critical mutations of the probands co-segregated with hearing loss. Screening of additional families in a relevant population was performed. TMC1 p.S647P proved to be a founder allele, contributing to 34% of genetic hearing loss in the Moroccan Jewish population.

Conclusions

Critical mutations were identified in 6 of the 11 original probands and their families, leading to the identification of causative alleles in 20 additional probands and their families. The integration of genomic analysis into early clinical diagnosis of hearing loss will enable prediction of related phenotypes and enhance rehabilitation. Characterization of the proteins encoded by these genes will enable an understanding of the biological mechanisms involved in hearing loss.  相似文献   
69.

Background

The major clinical challenge in the treatment of high-grade serous ovarian cancer (HGSOC) is the development of progressive resistance to platinum-based chemotherapy. The objective of this study was to determine whether intra-tumour genetic heterogeneity resulting from clonal evolution and the emergence of subclonal tumour populations in HGSOC was associated with the development of resistant disease.

Methods and Findings

Evolutionary inference and phylogenetic quantification of heterogeneity was performed using the MEDICC algorithm on high-resolution whole genome copy number profiles and selected genome-wide sequencing of 135 spatially and temporally separated samples from 14 patients with HGSOC who received platinum-based chemotherapy. Samples were obtained from the clinical CTCR-OV03/04 studies, and patients were enrolled between 20 July 2007 and 22 October 2009. Median follow-up of the cohort was 31 mo (interquartile range 22–46 mo), censored after 26 October 2013. Outcome measures were overall survival (OS) and progression-free survival (PFS). There were marked differences in the degree of clonal expansion (CE) between patients (median 0.74, interquartile range 0.66–1.15), and dichotimization by median CE showed worse survival in CE-high cases (PFS 12.7 versus 10.1 mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003). Bootstrap analysis with resampling showed that the 95% confidence intervals for the hazard ratios for PFS and OS in the CE-high group were greater than 1.0. These data support a relationship between heterogeneity and survival but do not precisely determine its effect size. Relapsed tissue was available for two patients in the CE-high group, and phylogenetic analysis showed that the prevalent clonal population at clinical recurrence arose from early divergence events. A subclonal population marked by a NF1 deletion showed a progressive increase in tumour allele fraction during chemotherapy.

Conclusions

This study demonstrates that quantitative measures of intra-tumour heterogeneity may have predictive value for survival after chemotherapy treatment in HGSOC. Subclonal tumour populations are present in pre-treatment biopsies in HGSOC and can undergo expansion during chemotherapy, causing clinical relapse.  相似文献   
70.
Creating true‐breeding lines is a critical step in plant breeding. Novel, completely homozygous true‐breeding lines can be generated by doubled haploid technology in single generation. Haploid induction through modification of the centromere‐specific histone 3 variant (CENH3), including chimeric proteins, expression of non‐native CENH3 and single amino acid substitutions, has been shown to induce, on outcrossing to wild type, haploid progeny possessing only the genome of the wild‐type parent, in Arabidopsis thaliana. Here, we report the characterization of 31 additional EMS‐inducible amino acid substitutions in CENH3 for their ability to complement a knockout in the endogenous CENH3 gene and induce haploid progeny when pollinated by the wild type. We also tested the effect of double amino acid changes, which might be generated through a second round of EMS mutagenesis. Finally, we report on the effects of CRISPR/Cas9‐mediated in‐frame deletions in the αN helix of the CENH3 histone fold domain. Remarkably, we found that complete deletion of the αN helix, which is conserved throughout angiosperms, results in plants which exhibit normal growth and fertility while acting as excellent haploid inducers when pollinated by wild‐type pollen. Both of these technologies, CRISPR mutagenesis and EMS mutagenesis, represent non‐transgenic approaches to the generation of haploid inducers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号