首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2539篇
  免费   135篇
  国内免费   3篇
  2023年   18篇
  2022年   34篇
  2021年   58篇
  2020年   44篇
  2019年   54篇
  2018年   70篇
  2017年   42篇
  2016年   79篇
  2015年   113篇
  2014年   123篇
  2013年   182篇
  2012年   185篇
  2011年   217篇
  2010年   114篇
  2009年   101篇
  2008年   132篇
  2007年   124篇
  2006年   124篇
  2005年   128篇
  2004年   97篇
  2003年   88篇
  2002年   81篇
  2001年   38篇
  2000年   32篇
  1999年   34篇
  1998年   18篇
  1997年   16篇
  1996年   13篇
  1995年   20篇
  1994年   12篇
  1993年   15篇
  1992年   26篇
  1991年   20篇
  1990年   18篇
  1989年   20篇
  1988年   23篇
  1987年   15篇
  1986年   14篇
  1985年   17篇
  1984年   11篇
  1983年   10篇
  1982年   11篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   6篇
  1974年   9篇
  1967年   5篇
排序方式: 共有2677条查询结果,搜索用时 31 毫秒
991.
Polyubiquitin-encoding cDNA clones were isolated from the generative cells of lily (Lilium longiflorum) and the sperm cells of Plumbago zeylanica. The described genes encode identical amino acid sequences, with no homology outside the coding regions. This gene participates in ubiquitination of proteins, presumably enhancing protein turnover in the germline during male reproductive differentiation. In this paper we show that the gene encoding polyubiquitin is highly up-regulated in both Lilium generative cells and one of the Plumbago sperm cell types in particular.  相似文献   
992.
993.
We describe here a dual-labeling technique involving the green fluorescent protein (GFP) and the red fluorescent protein (DsRed) for in situ monitoring of horizontal gene transfer via conjugation. A GFPmut3b-tagged derivative of narrow-host-range TOL plasmid (pWWO) was delivered to Pseudomonas putida KT2442, which was chromosomally labeled with dsRed by transposon insertion via biparental mating. Green and red fluorescent proteins were coexpressed in donor P. putida cells. Cells expressing both fluorescent proteins were smaller in size than cells expressing GFP alone. Donors and transconjugants in mixed culture or sludge samples were discriminated on the basis of their fluorescence by using confocal laser scanning microscopy. Conjugal plasmid transfer frequencies on agar surfaces and in sludge microcosms were determined microscopically without cultivation. This method worked well for in situ monitoring of horizontal gene transfer in addition to tracking the fate of microorganisms released into complex environments. To the best of our knowledge, this is the first study that discusses the coexpression of GFP and DsRed for conjugal gene transfer studies.  相似文献   
994.
S K Behura  S Nair  M Mohan 《Génome》2001,44(6):947-954
In an effort to study genome diversity within and between the Indian biotypes of the Asian rice gall midge, Orseolia oryzae, a major insect pest of rice, we made use of mariner transposable element integration site polymorphisms. Using degenerate primers, the design of which is based on mariner sequences, we amplified a ca. 450 bp mariner sequence from the rice gall midge. The mariner sequence showed homology with that of a mariner element isolated from the Hessian fly, Mayetiola destructor, a major dipteran pest of wheat. Southern hybridization, using this mariner fragment as a probe, revealed that the mariner elements are moderately to highly repetitive in the rice gall midge genome. Based on the sequence information of this 450-bp PCR-amplified fragment, outward-directed primers were designed and used in an inverse PCR (iPCR) to amplify the DNA flanking the conserved regions. To study the regions flanking the mariner integration sites, we employed a novel PCR-based approach: a combination of sequence specific amplification polymorphism (SSAP) and amplified fragment length polymorphism (AFLP). The outward-directed mariner-specific primer was used in combination with adapter-specific primers with 1-3 selective nucleotides at their 3' ends. The amplification products were resolved on an agarose gel, Southern-transferred onto nylon membranes, and probed with the iPCR fragment. Results revealed biotype-specific polymorphisms in the regions flanking the mariner integration sites, suggesting that mariner elements in the rice gall midge may be fixed in a biotype-specific manner. The implications of these results are discussed in the context of biotype differentiation.  相似文献   
995.
Genetic contributions of nonautoimmune SWR mice toward lupus nephritis.   总被引:1,自引:0,他引:1  
(SWR x New Zealand Black (NZB))F(1) (or SNF(1)) mice succumb to lupus nephritis. Although several NZB lupus susceptibility loci have been identified in other crosses, the potential genetic contributions of SWR to lupus remain unknown. To ascertain this, a panel of 86 NZB x F(1) backcross mice was immunophenotyped and genome scanned. Linkage analysis revealed four dominant SWR susceptibility loci (H2, Swrl-1, Swrl-2, and Swrl-3) and a recessive NZB locus, Nba1. Early mortality was most strongly linked to the H2 locus on chromosome (Chr) 17 (log likelihood of the odds (LOD) = 4.59 - 5.38). Susceptibility to glomerulonephritis was linked to H2 (Chr 17, LOD = 2.37 - 2.70), Swrl-2 (Chr 14, 36 cM, LOD = 2.48 - 2.71), and Nba1 (Chr 4, 75 cM, LOD = 2.15 - 2.23). IgG antinuclear autoantibody development was linked to H2 (Chr 17, LOD = 4.92 - 5.48), Swrl-1 (Chr 1, 86 cM, colocalizing with Sle1 and Nba2, LOD = 2.89 - 2.91), and Swrl-3 (Chr 18, 14 cM, LOD = 2.07 - 2.13). For each phenotype, epistatic interaction of two to three susceptibility loci was required to attain the high penetrance levels seen in the SNF(1) strain. Although the SWR contributions H2, Swrl-1, and Swrl-2 map to loci previously mapped in other strains, often linked to very similar phenotypes, Swrl-3 appears to be a novel locus. In conclusion, lupus in the SNF(1) strain is truly polygenic, with at least four dominant contributions from the SWR strain. The immunological functions and molecular identities of these loci await elucidation.  相似文献   
996.
Biochar is an organic amendment used for soil remediation, there are only a few studies documenting the effects of nitrogen on the role of biochar in contaminated soils. A pot experiment was conducted to investigate the impacts of biochar (0%, 1%, and 2.5%, w/w) and nitrogen (0, 100, and 200 mg N kg?1) on plant growth, nutrient and cadmium (Cd) uptake of Cichorium intybus. N, P, Ca, Mg, and Cd concentrations increased with N level in 0% and 1% biochar treatments. In plants treated with 2.5% biochar, 200 mg N kg?1 addition caused significant reductions of N, P, Ca, Mg, and Cd concentrations in comparison to 100 mg N kg?1 treatments. Nitrogen promoted shoot biomass at all biochar treatments, while biochar had no effect on shoot biomass in 0 and 200 mg N kg?1 addition treatments. Nitrogen also significantly increased N, P, K, Ca, Mg, and Cd contents in the 0% and 1.5% biochar addition treatments. Although soil DTPA-extractable Cd concentration showed the lowest values in 1% biochar in combination with 100 and 200 mg N kg?1 addition treatments, lowest shoot Cd concentration, and relatively high shoot biomass occurred in the 2.5% biochar + 200 mg N kg?1 treatment. Based on these results, biochar application at its highest rate (2.5%) in combination with high N supply (200 mg N kg?1) contributed to both crop yield and agricultural product safety. N input alone might increase the risk of human health, and the optimum N dose should be determined during phytostabilization process.  相似文献   
997.
We have developed a polymerase chain reaction (PCR)-based assay that could effectively reduce the time period required to screen and select for Gall Midgeresistant rice lines under field conditions. The primers for the assay were designed on the basis of sequence information of two phenotype specific random amplified polymorphic DNA fragments which were found to be tightly linked to Gall Midge biotype-1 resistance gene (Gm2). The two RAPD fragments, F81700 in the susceptible parent ARC6650 and F10600 in the resistant parent Phalguna, were identified after screening 5450 loci using 520 random primers on genomic DNAs of ARC6650 and Phalguna. These primers, when used in a multiplexed PCR, amplified specifically a 1.7-kb and 0.6-kb fragment in the susceptible and resistant parents, respectively. When this assay was performed on genomic DNAs of 44 recombinant inbred lines derived from ARC6650 x Phalguna and 5 lines derived from other crosses where one of the parents was Phalguna, ARC6650 or their derivatives, the primers amplified a 1.7-kb fragment in all of the susceptible lines or a 0.6-kb fragment in all of the resistant ones. These markers can be of potential use in the marker-aided selection of Gall Midge biotype-1 resistant phenotypes. As screening for resistance can now be conducted independent of the availability of insects, the breeding of resistant varieties can be hastened.  相似文献   
998.
3‐Hydroxypropionic acid (3‐HP) is a commercially valuable chemical with the potential to be a key building block for deriving many industrially important chemicals. However, its biological production has not been well documented. Our previous study demonstrated the feasibility of producing 3‐HP from glycerol using the recombinant Escherichia coli SH254 expressing glycerol dehydratase (DhaB) and aldehyde dehydrogenase (AldH), and reported that an “imbalance between the two enzymes” and the “instability of the first enzyme DhaB” were the major factors limiting 3‐HP production. In this study, the efficiency of the recombinant strain(s) was improved by expressing DhaB and AldH in two compatible isopropyl‐thio‐β‐galactoside (IPTG) inducible plasmids along with glycerol dehydratase reactivase (GDR). The expression levels of the two proteins were measured. It was found that the changes in protein expression were associated with their enzymatic activity and balance. While cloning an alternate aldehyde dehydrogenase (ALDH), α‐ketoglutaric semialdehyde dehydrogenase (KGSADH), instead of AldH, the recombinant E. coli SH‐BGK1 showed the highest level of 3‐HP production (2.8 g/L) under shake‐flask conditions. When an aerobic fed‐batch process was carried out under bioreactor conditions at pH 7.0, the recombinant SH‐BGK1 produced 38.7 g 3‐HP/L with an average yield of 35%. This article reports the highest level of 3‐HP production from glycerol thus far. Biotechnol. Bioeng. 2009; 104: 729–739 © 2009 Wiley Periodicals, Inc.  相似文献   
999.
Extracellular signals are transduced across the cell by the cell surface receptors, with the aid of G-proteins, which act at a critical point of signal transduction and cellular regulation. Structurally, G-proteins are heterotrimeric consisting α, β and γ subunits but in functionally active state they dissociate into α subunit coupled to GTP and as βγ dimer. G-proteins can be broadly divided into two classes based on their sensitivity to pertussis toxin and cholera toxin. Existence of various forms of each of the subunit allows molecular diversity in the subunit species of G-proteins. These subunits interact with a wide range of receptors and effectors, facilitated by post translational modification of their subunits. Different types of G-proteins mediate several signalling events in different parts of the body. This review summarizes the features of (i) structural and functional heterogenity among different subunits of G-proteins, (ii) interaction of G-proteins and their subunits with effectors with specific cases of G-protein mediated signalling in olfaction, phototransduction in the retina, ras andras related transduction and (iii) disease conditions associated with malfunctioning of G-proteins.  相似文献   
1000.
ABSTRACT: BACKGROUND: RASSF1A and RASSF1C are two major isoforms encoded by the Ras association domain family 1 (RASSF1) gene through alternative promoter selection and mRNA splicing. RASSF1A is a well established tumor suppressor gene. Unlike RASSF1A, RASSF1C appears to have growth promoting actions in lung cancer. In this article, we report on the identification of novel RASSF1C target genes in non small cell lung cancer (NSCLC). METHODS: Over-expression and siRNA techniques were used to alter RASSF1C expression in human lung cancer cells, and Affymetrix-microarray study was conducted using NCI-H1299 cells over-expressing RASSF1C to identify RASSF1C target genes. RESULTS: The microarray study intriguingly shows that RASSF1C modulates the expression of a number of genes that are involved in cancer development, cell growth and proliferation, cell death, and cell cycle. We have validated the expression of some target genes using qRT-PCR. We demonstrate that RASSF1C over-expression increases, and silencing of RASSF1C decreases, the expression of PIWIL1 gene in NSCLC cells using qRT-PCR, immunostaining, and Western blot analysis. We also show that RASSF1C over-expression induces phosphorylation of ERK1/2 in lung cancer cells, and inhibition of the MEK-ERK1/2 pathway suppresses the expression of PIWIL1 gene expression, suggesting that RASSF1C may exert its activities on some target genes such as PIWIL1 through the activation of the MEK-ERK1/2 pathway. Also, PIWIL1 expression is elevated in lung cancer cell lines compared to normal lung epithelial cells. CONCLUSIONS: Taken together, our findings provide significant data to propose a model for investigating the role of RASSF1C/PIWIL1 proteins in initiation and progression of lung cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号