首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   3篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   8篇
  2013年   13篇
  2012年   13篇
  2011年   9篇
  2010年   10篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有108条查询结果,搜索用时 46 毫秒
41.

Aims

Potato (Solanum tuberosum L.) has a large phosphorus (P)-fertiliser requirement. This is thought to be due to its inability to acquire P effectively from the soil. This work tested the hypothesis that early proliferation of its root system would enhance P acquisition, accelerate canopy development, and enable greater yields.

Methods

Six years of field experiments characterised the relationships between (1) leaf P concentration ([P]leaf), tuber yield, and tuber P concentration ([P]tuber) among 27 Tuberosum, 35 Phureja and 4 Diploid Hybrid genotypes and (2) juvenile root vigour, P acquisition and tuber yield among eight Tuberosum genotypes selected for contrasting responses to P-fertiliser.

Results

Substantial genetic variation was observed in tuber yield, [P]leaf and [P]tuber. There was a strong positive relationship between tuber yields and P acquisition among genotypes, whether grown with or without P-fertiliser. Juvenile root vigour was correlated with accelerated canopy development and both greater P acquisition and tuber biomass accumulation early in the season. However, the latter relationships became weaker during the season.

Conclusions

Increased juvenile root vigour accelerated P acquisition and initial canopy cover and, thereby, increased tuber yields. Juvenile root vigour is a heritable trait and can be selected to improve P-fertiliser use efficiency of potato.
  相似文献   
42.
The Southern High Plains (SHP) region of Texas in the United States, where cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass sorghum (Sorghum bicolor). Evaluation of hydrological responses and biofuel production potential of hypothetical land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops enables better understanding of the associated key agroecosystem processes and provides for the feasibility assessment of the targeted land use change in the SHP. The Soil and Water Assessment Tool (SWAT) was used to assess the impacts of replacing cotton with perennial Alamo switchgrass (Panicum virgatum L.), Miscanthus × giganteus (Miscanthus sinensis Anderss. [Poaceae]), big bluestem (Andropogon gerardii) and annual biomass sorghum on water balances, water use efficiency and biofuel production potential in the Double Mountain Fork Brazos watershed. Under perennial grass scenarios, the average (1994–2009) annual surface runoff from the entire watershed decreased by 6–8% relative to the baseline cotton scenario. In contrast, surface runoff increased by about 5% under the biomass sorghum scenario. Perennial grass land use change scenarios suggested an increase in average annual percolation within a range of 3–22% and maintenance of a higher soil water content during August to April compared to the baseline cotton scenario. About 19.1, 11.1, 3.2 and 8.8 Mg ha?1 of biomass could potentially be produced if cotton area in the watershed would hypothetically be replaced by Miscanthus, switchgrass, big bluestem and biomass sorghum, respectively. Finally, Miscanthus and switchgrass were found to be ideal bioenergy crops for the dryland and irrigated systems, respectively, in the study watershed due to their higher water use efficiency, better water conservation effects, greater biomass and biofuel production potential, and minimum crop management requirements.  相似文献   
43.
Nithya Srinivasan 《BBA》2009,1787(9):1057-682
This review focuses on phylloquinone as an indispensable link between light-induced charge separation and subsequent charge stabilization in Photosystem I (PS I). Here, the role of the polypeptide in conferring the necessary kinetic and thermodynamic properties to phylloquinone so as to specify its functional role in PS I electron transfer is discussed. Photosynthetic electron transfer and the role of quinones in Type I and Type II reaction centers are introduced at the outset with particular emphasis on the determination of redox potentials of the cofactors. Currently used methodologies, particularly time-resolved optical spectroscopy and varieties of magnetic resonance spectroscopy that have become invaluable in uncovering the details of phylloquinone function are described in depth. Recent studies on the selective alteration of the protein environment and on the incorporation of foreign quinones either by chemical or genetic means are explored to assess how these studies have improved our understanding of protein-quinone interactions. Particular attention is paid to the function of the H-bond, methyl group and phytyl tail of the phylloquinone in interacting with the protein environment.  相似文献   
44.
According to the Centers for Disease Control and Prevention, biofilms cause 65% of infections in developed countries. Pseudomonas aeruginosa biofilm cause life threatening infections in cystic fibrosis infection and they are 1,000 times more tolerant to antibiotic than the planktonic cells. As quorum sensing, hydrophobicity index and extracellular polysaccharide play a crucial role in biofilm formation, extracts from 46 marine bacterial isolates were screened against these factors in P. aeruginosa. Eleven extracts showed antibiofilm activity. Extracts of S6-01 (Bacillus indicus = MTCC 5559) and S6-15 (Bacillus pumilus = MTCC 5560) inhibited the formation of PAO1 biofilm up to 95% in their Biofilm Inhibitory Concentration(BIC) of 50 and 60 μg/ml and 85% and 64% in the subinhibitory concentrations (1/4 and 1/8 of the BIC, respectively). Furthermore, the mature biofilm was disrupted to 70–74% in their BIC. The antibiofilm compound from S6-15 was partially purified using solvent extraction followed by TLC and silica column and further characterized by IR analysis. Current study for the first time reveals the antibiofilm and antiquorum-sensing activity of B. pumilus, B. indicus, Bacillus arsenicus, Halobacillus trueperi, Ferrimonas balearica, and Marinobacter hydrocarbonoclasticus from marine habitat.  相似文献   
45.

Background

The present study focuses on identifying and developing an anti-diabetic molecule from plant sources that would effectively combat insulin resistance through proper channeling of glucose metabolism involving glucose transport and storage.

Methods

Insulin-stimulated glucose uptake formed the basis for isolation of a bioactive molecule through column chromatography followed by its characterization using NMR and mass spectroscopic analysis. Mechanism of glucose transport and storage was evaluated based on the expression profiling of signaling molecules involved in the process.

Results

The study reports (i) the isolation of a bioactive compound 3β-taraxerol from the ethyl acetate extract (EAE) of the leaves of Mangifera indica (ii) the bioactive compound exhibited insulin-stimulated glucose uptake through translocation and activation of the glucose transporter (GLUT4) in an IRTK and PI3K dependent fashion. (iii) the fate of glucose following insulin-stimulated glucose uptake was ascertained through glycogen synthesis assay that involved the activation of PKB and suppression of GSK3β.

General significance

This study demonstrates the dual activity of 3β-taraxerol and the ethyl acetate extract of Mangifera indica as a glucose transport activator and stimulator of glycogen synthesis. 3β-taraxerol can be validated as a potent candidate for managing the hyperglycemic state.  相似文献   
46.
We have shown, the outcome of antifungal activity of phenazine derivatives which is produced by fluorescent pseudomonads (FPs) for the control of sheath blight of rice. A total of 50 fluorescent pseudomonads (FPs) were isolated from rice rhizosphere. Off which, 36 FPs exhibited antagonistic activity against Rhizoctonia solani, Macrophomina phaseolina, Fusarium oxysporum, Alternaria alternata and Sclerotium rolfsii up to 70–80% compared to control by dual culture method. BOX-PCR analyses of antagonistic isolates indicated that two phylogenetic group, where group I consisted of 28 isolates and eight isolates belongs to group II. Among 36 FPs, a total of 10 FPs revealed that the presence of phenazine derivatives on thin layer chromatography (TLC), which is coincided with that of authentic phenazine with Rf value 0.57. Similar to TLC analysis, antibiotic encoding gene phenazine-1-carboxamide (PCN) was detected in 10 FPs by PCR analysis with respective primer. Among, PCN detected isolates of FPs, a significant biocontrol potential possessing isolate designated as VSMKU1 and it was showed prominent antifungal activity against R. solani and other tested fungal pathogens. Hence, the isolate VSMKU1 was selected for further studies. The selected isolate VSMKU1 was identified as Pseudomonas aeruginosa by 16S rDNA sequence analysis. The antifungal metabolite phenazine like compound produced by VSMKU1 was confirmed by UV, FT-IR and HPLC analysis. The phenazine compound from VSMKU1 significantly arrest the growth of R. solani compared to carbendazim by well diffusion method. The detached leaf assay showed remarkable inhibition of lesion height 80 to 85% by the treatments of culture (VSMKU1), cell free culure filtrate and phenazine like compound compared to control and other treatments was observed in detached leaves of rice. These results emphasized that VSMKU1 isolate can be used as an alternative potential biocontrol agent against sheath blight of rice, instead of using commercial fungicide such as validamycin and carbendazim which cause environmental pollution and health hazards.  相似文献   
47.
Molecular Biology Reports - The emergence of multi drug resistant clone CC320 serotype19F/19A and their capsular (cps) antigenic variants due to selective pressures such as vaccine had been...  相似文献   
48.

Background

HLA directed antibodies play an important role in acute and chronic allograft rejection. During viral infection of a patient with HLA antibodies, the HLA antibody levels may rise even though there is no new immunization with antigen. However it is not known whether the converse occurs, and whether changes on non-donor specific antibodies are associated with any outcomes following HLA antibody incompatible renal transplantation.

Methods

55 patients, 31 women and 24 men, who underwent HLAi renal transplant in our center from September 2005 to September 2010 were included in the studies. We analysed the data using two different approaches, based on; i) DSA levels and ii) rejection episode post transplant. HLA antibody levels were measured during the early post transplant period and corresponding CMV, VZV and Anti-HBs IgG antibody levels and blood group IgG, IgM and IgA antibodies were quantified.

Results

Despite a significant DSA antibody rise no significant non-donor specific HLA antibody, viral or blood group antibody rise was found. In rejection episode analyses, multiple logistic regression modelling showed that change in the DSA was significantly associated with rejection (p = 0.002), even when adjusted for other antibody levels. No other antibody levels were predictive of rejection. Increase in DSA from pre treatment to a post transplant peak of 1000 was equivalent to an increased chance of rejection with an odds ratio of 1.47 (1.08, 2.00).

Conclusion

In spite of increases or decreases in the DSA levels, there were no changes in the viral or the blood group antibodies in these patients. Thus the DSA rise is specific in contrast to the viral, blood group or third party antibodies post transplantation. Increases in the DSA post transplant in comparison to pre-treatment are strongly associated with occurrence of rejection.  相似文献   
49.
Herpes simplex virus 1 (HSV-1) glycoprotein K (gK) is expressed on virions and functions in entry, inasmuch as HSV-1(KOS) virions devoid of gK enter cells substantially slower than is the case for the parental KOS virus (T. P. Foster, G. V. Rybachuk, and K. G. Kousoulas, J. Virol. 75:12431-12438, 2001). Deletion of the amino-terminal 68-amino-acid (aa) portion of gK caused a reduction in efficiency and kinetics of virus entry similar to that of the gK-null virus in comparison to the HSV-1(F) parental virus. The UL20 membrane protein and gK were readily detected on double-gradient-purified virion preparations. Immuno-electron microscopy confirmed the presence of gK and UL20 on purified virions. Coimmunoprecipitation experiments using purified virions revealed that gK interacted with UL20, as has been shown in virus-infected cells (T. P. Foster, V. N. Chouljenko, and K. G. Kousoulas, J. Virol. 82:6310-6323, 2008). Scanning of the HSV-1(F) viral genome revealed the presence of a single putative tobacco etch virus (TEV) protease site within gD, while additional TEV predicted sites were found within the UL5 (helicase-primase helicase subunit), UL23 (thymidine kinase), UL25 (DNA packaging tegument protein), and UL52 (helicase-primase primase subunit) proteins. The recombinant virus gDΔTEV was engineered to eliminate the single predicted gD TEV protease site without appreciably affecting its replication characteristics. The mutant virus gK-V5-TEV was subsequently constructed by insertion of a gene sequence encoding a V5 epitope tag in frame with the TEV protease site immediately after gK amino acid 68. The gK-V5-TEV, R-gK-V5-TEV (revertant virus), and gDΔTEV viruses exhibited similar plaque morphologies and replication characteristics. Treatment of the gK-V5-TEV virions with TEV protease caused approximately 32 to 34% reduction of virus entry, while treatment of gDΔTEV virions caused slightly increased virus entry. These results provide direct evidence that the gK and UL20 proteins, which are genetically and functionally linked to gB-mediated virus-induced cell fusion, are structural components of virions and function in virus entry. Site-specific cleavage of viral glycoproteins on mature and fully infectious virions utilizing unique protease sites may serve as a generalizable method of uncoupling the roles of viral glycoproteins in virus entry and virion assembly.  相似文献   
50.
This study was conducted to analyze alterations in the human serum proteome as a consequence of infection by malaria parasites Plasmodium falciparum and P. vivax to obtain mechanistic insights about disease pathogenesis, host immune response, and identification of potential protein markers. Serum samples from patients diagnosed with falciparum malaria (FM) (n?=?20), vivax malaria (VM) (n?=?17) and healthy controls (HC) (n?=?20) were investigated using multiple proteomic techniques and results were validated by employing immunoassay-based approaches. Specificity of the identified malaria related serum markers was evaluated by means of analysis of leptospirosis as a febrile control (FC). Compared to HC, 30 and 31 differentially expressed and statistically significant (p<0.05) serum proteins were identified in FM and VM respectively, and almost half (46.2%) of these proteins were commonly modulated due to both of the plasmodial infections. 13 proteins were found to be differentially expressed in FM compared to VM. Functional pathway analysis involving the identified proteins revealed the modulation of different vital physiological pathways, including acute phase response signaling, chemokine and cytokine signaling, complement cascades and blood coagulation in malaria. A panel of identified proteins consists of six candidates; serum amyloid A, hemopexin, apolipoprotein E, haptoglobin, retinol-binding protein and apolipoprotein A-I was used to build statistical sample class prediction models. By employing PLS-DA and other classification methods the clinical phenotypic classes (FM, VM, FC and HC) were predicted with over 95% prediction accuracy. Individual performance of three classifier proteins; haptoglobin, apolipoprotein A-I and retinol-binding protein in diagnosis of malaria was analyzed using receiver operating characteristic (ROC) curves. The discrimination of FM, VM, FC and HC groups on the basis of differentially expressed serum proteins demonstrates the potential of this analytical approach for the detection of malaria as well as other human diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号