首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1171篇
  免费   211篇
  1382篇
  2021年   9篇
  2017年   10篇
  2016年   15篇
  2015年   29篇
  2014年   39篇
  2013年   35篇
  2012年   41篇
  2011年   49篇
  2010年   26篇
  2009年   21篇
  2008年   38篇
  2007年   54篇
  2006年   51篇
  2005年   48篇
  2004年   42篇
  2003年   36篇
  2002年   41篇
  2001年   24篇
  2000年   30篇
  1999年   26篇
  1998年   14篇
  1997年   12篇
  1996年   11篇
  1995年   12篇
  1993年   10篇
  1992年   24篇
  1991年   29篇
  1990年   24篇
  1989年   29篇
  1988年   32篇
  1987年   27篇
  1986年   27篇
  1985年   26篇
  1984年   25篇
  1983年   15篇
  1982年   19篇
  1981年   21篇
  1980年   11篇
  1979年   26篇
  1978年   20篇
  1977年   23篇
  1976年   11篇
  1975年   20篇
  1974年   39篇
  1973年   28篇
  1972年   16篇
  1971年   13篇
  1969年   9篇
  1967年   11篇
  1966年   19篇
排序方式: 共有1382条查询结果,搜索用时 9 毫秒
51.
International Microbiology - In this study, we aimed to develop a novel, sustained release varnish (SRV) for voice prostheses (VP) releasing chlorhexidine (CHX), for the prevention of biofilm...  相似文献   
52.
Cathepsin G is a neutrophil-derived serine protease that contributes to tissue damage at sites of inflammation. The actions of cathepsin G are reported to be mediated by protease-activated receptor (PAR)-4 (a thrombin receptor) in human platelets. This study provides the first evidence that cathepsin G promotes inositol 1,4,5-trisphosphate accumulation, activates ERK, p38 MAPK, and AKT, and decreases contractile function in cardiomyocytes. Because some cathepsin G responses mimic cardiomyocyte activation by thrombin, a role for PARs was considered. Cathepsin G markedly activates phospholipase C and p38 MAPK in cardiomyocytes from PAR-1-/- mice, but it fails to activate phospholipase C, ERK, p38 MAPK, or AKT in PAR-1- or PAR-4-expressing PAR-1-/- fibroblasts (which display robust responses to thrombin). These results argue that PAR-1 does not mediate the actions of cathepsin G in cardiomyocytes, and neither PAR-1 nor PAR-4 mediates the actions of cathepsin G in fibroblasts. Of note, prolonged incubation of cardiomyocytes with cathepsin G results in the activation of caspase-3, cleavage of FAK and AKT, sarcomeric disassembly, cell rounding, cell detachment from underlying matrix, and morphologic features of apoptosis. Inhibition of Src family kinases or caspases (with PP1 or benzyloxycarbonyl-VAD-fluoromethyl ketone, respectively) delays FAK and AKT cleavage and cardiomyocyte detachment from substrate. Collectively, these studies describe novel cardiac actions of cathepsin G that do not require PARs and are predicted to assume functional importance at sites of interstitial inflammation in the heart.  相似文献   
53.
Isolation of the intercellular glycoproteins of desmosomes   总被引:14,自引:31,他引:14       下载免费PDF全文
To characterize the desmosome components that mediate intercellular adhesion and cytoskeletal-plasma membrane attachment, we prepared whole desmosomes and isolated desmosomal intercellular regions (desmosomal "cores") from the living cell layers of bovine muzzle epidermis. The tissue was disrupted in a nonionic detergent at low pH, sonicated, and the insoluble residue fractionated by differential centrifugation and metrizamide gradient centrifugation. Transmission electron microscopic analyses reveal that a fraction obtained after differential centrifugation is greatly enriched in whole desmosomes that possess intracellular plaques. Metrizamide gradient centrifugation removes most of the plaque material, leaving the intercellular components and the adjoining plasma membranes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis coupled with methods that reveal carbohydrate-containing moieties on gels demonstrate that certain proteins present in whole desmosomes are glycosylated. These glycoproteins are specifically and greatly enriched in the desmosome cores of which they are the principal protein constituents, and thus may function as the intercellular adhesive of the desmosome.  相似文献   
54.
55.
To help characterize the Na,K-ATPase active site with enzyme incorporated into phospholipid vesicles, the activities with alternative substrates were compared, 22Na/Na-transport was equivalent with ATP, CTP, carbamylphosphate and acetylphosphate, but slower with CTP, 3-O-methylfluoresceinphosphate (3-O-MFP), nitrophenylphosphate and umbelliferonephosphate. It indicates a slower rate of formation of phosphorylating enzyme complex in conformation position of E1 (E1P) when the second group of substrates is bound with enzyme active center. 22Na/K-transport was half as effective with CTP as with ATP and was far slower with the other substrates. It indicates a more stringent selectivity at the low-affinity site of enzyme in conformation E2 that accelerates the slow step of this transport mode. Although enzyme modification with fluoresceinisothiocyanate blocks the high-affinity site to ATP, the K-phosphatase reaction catalyzed by E2 is retained, even with a substrate, 3-O-MFP, that binds to the adenine pocket. Dimethylsulfoxide inhibits hydrolysis of the nucleotides and of the carboxylic phosphate substrates of the K-phosphatase reaction, but stimulates hydrolysis of the phenolic phosphate substrates (nitrophenylphosphate and umbelliferone phosphate) which normally are hydrolyzed more slowly than the other substrates. On the basis of these data the authors propose the model of Na,K-ATPase active center.  相似文献   
56.
This paper presents electrophysiological evidence that small changes in [K+]o modulate the activity of the Na+-K+ pump on the apical membrane of the frog retinal pigment epithelium (RPE). This membrane also has a large relative K+ conductance so that lowering [K+]o hyperpolarizes it and therefore increases the transepithelial potential (TEP). Ba2+, a K+ channel blocker, eliminated these normal K+-evoked responses; in their place, lowering [K+]o evoked an apical depolarization and TEP decrease that were blocked by apical ouabain or strophanthidin. These data indicate that Ba2+ blocked the major K+ conductance(s) of the RPE apical membrane and unmasked a slowing of the normally hyperpolarizing electrogenic Na+-K+ pump caused by lowering [K+]o. Evidence is also presented that [K+]o modulates the pump in the isolated RPE under physiological conditions (i.e., without Ba2+). In the intact retina, light decreases subretinal [K+]o and produces the vitreal-positive c-wave of the electroretinogram (ERG) that originates primarily in the RPE from a hyperpolarization of the apical membrane and TEP increase. When Ba2+ was present in the retinal perfusate, the apical membrane depolarized in response to light and the TEP decreased so that the ERG c-wave inverted. The retinal component of the c-wave, slow PIII, was abolished by Ba2+. The effects of Ba2+ were completely reversible. We conclude that Ba2+ unmasks a slowing of the RPE Na+-K+ pump by the light-evoked decrease in [K+]o. Such a response would reduce the amplitude of the normal ERG c-wave.  相似文献   
57.
Whereas glucose is a major substrate for pulmonary lipid synthesis, fructose has also been suggested as a potential substrate. In vivo pulmonary fatty acid synthesis is depressed in hormonally deprived conditions, such as diabetes, and this can be modified by fructose feeding, but not by glucose feeding. In this study the glucose and fructose utilizations were compared in normal, diabetic and fasting states using isolated perfused rat lungs. When (U-14C)- or (5-3H)-glucose was used as substrate, glucose utilization by lung was reduced by 50% in both the fasting and diabetic animals compared to the normal controls. Using (U-14C)-glucose as substrate, the incorporation of (14C)-label in various metabolites of glucose was significantly depressed. For example, this reduction was 50% in lactate, pyruvate and CO2, 15% in ethanol-insoluble fraction, 65% in neutral lipids, 75% in phospholipids, 80% in fatty acid moiety, 40% in deacylated fraction and 10% in the polysaccharide fractions. Refeeding the fasted animals or insulin treatment to the diabetic animals restored these depressed (14C)-recoveries to the normal levels. Fructose utilization was less than 10% of glucose utilization, but remained unaffected by fasting and diabetic states. In addition, pulmonary hexokinase enzyme activity was lowered significantly in fasting and diabetic animals, whereas fructokinase enzyme activity was not altered. Despite the low rate of fructose utilization, these results suggest that fructose may serve as an alternative substrate for pulmonary phospholipid synthesis when glucose utilization is significantly depressed.  相似文献   
58.
The effect of feeding supplemental biotin on net absorption and metabolism of nutrients by the portal-drained viscera (PDV; the gut, pancreas, spleen and associated fat) and liver of lactating dairy cows was measured. Three cows in early to mid-lactation catheterised for measurements of net nutrient absorption and metabolism by the PDV and liver were fed a total-mixed ration with or without supplemental biotin at 20 mg/day using a switch-back design (ABA v. BAB) with three 2-week periods. There were no effects of feeding biotin on dry matter intake (22.2 kg/day), milk yield (29.5 kg/day) or milk composition. There was also no effect of feeding biotin on net release of glucose by the liver, net liver removal of glucose precursors (propionate, alanine, lactate) or net liver release of β-hydroxybutyrate. Feeding biotin increased net PDV release of ammonia. Reasons for the response are not certain, but a numerical increase in net PDV release of acetate suggests that rumen or hindgut fermentation was altered. Results of the present study do not support the hypothesis that supplemental biotin increases liver glucose production in lactating dairy cows.  相似文献   
59.
Dinoflagellates within the genus Symbiodinium are photosymbionts of many tropical reef invertebrates, including corals, making them central to the health of coral reefs. Symbiodinium have therefore gained significant research attention, though studies have been constrained by technical limitations. In particular, the generation of viable cells with their cell walls removed (termed protoplasts) has enabled a wide range of experimental techniques for bacteria, fungi, plants, and algae such as ultrastructure studies, virus infection studies, patch clamping, genetic transformation, and protoplast fusion. However, previous studies have struggled to remove the cell walls from armored dinoflagellates, potentially due to the internal placement of their cell walls. Here, we produce the first Symbiodinium protoplasts from three genetically and physiologically distinct strains via incubation with cellulase and osmotic agents. Digestion of the cell walls was verified by a lack of Calcofluor White fluorescence signal and by cell swelling in hypotonic culture medium. Fused protoplasts were also observed, motivating future investigation into intra‐ and inter‐specific somatic hybridization of Symbiodinium. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Generation of Symbiodinium protoplasts opens exciting, new avenues for researching these crucial symbiotic dinoflagellates, including genetic modification.  相似文献   
60.

Background

Intravascular hemolysis in sickle cell anemia could contribute to complications associated with nitric oxide deficiency, advancing age, and increased mortality. We have previously reported that intense hemolysis is associated with increased risk of vascular complications in a small cohort of adults with sickle cell disease. These observations have not been validated in other populations.

Methods

The distribution of serum lactic dehydrogenase (LDH) values was used as a surrogate measure of intravascular hemolysis in a contemporaneous patient group and an historical adult population from the Cooperative Study of Sickle Cell Disease (CSSCD), all with sickle cell anemia. Chronic hyper-hemolysis was defined by the top LDH quartile and was compared to the lowest LDH quartile.

Results

Hyper-hemolysis subjects had higher systolic blood pressure, higher prevalence of leg ulcers (OR 3.27, 95% CI 1.92-5.53, P<0.0001), priapism (OR 2.62, 95% CI 1.13-6.90, P = 0.03) and pulmonary hypertension (OR 4.32, 95% CI 2.12-8.60, P<0.0001), while osteonecrosis (OR 0.32, 95% CI 0.19-0.54, P<0.0001) and pain (OR 0.23, 95% CI 0.09-0.55, P = 0.0004) were less prevalent. Hyper-hemolysis was influenced by fetal hemoglobin and α thalassemia, and was a risk factor for early death in the CSSCD population (Hazard Ratio = 1.97, P = 0.02).

Conclusions

Steady state LDH measurements can identify a chronic hyper-hemolysis phenotype which includes less frequent vasooclusive pain and earlier mortality. Clinicians should consider sickle cell specific therapies for these patients, as is done for those with more frequent acute pain. The findings also suggest that an important class of disease modifiers in sickle cell anemia affect the rate of hemolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号