首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   24篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   9篇
  2013年   4篇
  2012年   12篇
  2011年   12篇
  2010年   11篇
  2009年   5篇
  2008年   5篇
  2007年   11篇
  2006年   6篇
  2005年   17篇
  2004年   17篇
  2003年   3篇
  2002年   11篇
  2001年   8篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1970年   1篇
  1954年   2篇
  1947年   1篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
101.
Reactive species of oxygen, nitrogen and sulfur play cell signalling roles in human health, e.g. recent studies have shown that increased dietary nitrate, which is a source of RNS (reactive nitrogen species), lowers resting blood pressure and the oxygen cost of exercise. In such studies, plasma nitrite and nitrate are readily determined by chemiluminescence. At sites of inflammation, such as the joints of RA (rheumatoid arthritis) patients, the generation of ROS (reactive oxygen species) and RNS overwhelms antioxidant defences and one consequence is oxidative/nitrative damage to proteins. For example, in the inflamed joint, increased RNS-mediated protein damage has been detected in the form of a biomarker, 3-nitrotyrosine, by immunohistochemistry, Western blotting, ELISAs and MS. In addition to NO?, another cell-signalling gas produced in the inflamed joint is H2S (hydrogen sulfide), an RSS (reactive sulfur species). This gas is generated by inflammatory induction of H2S-synthesizing enzymes. Using zinc-trap spectrophotometry, we detected high (micromolar) concentrations of H2S in RA synovial fluid and levels correlated with clinical scores of inflammation and disease activity. What might be the consequences of the inflammatory generation of reactive species? Effects on inflammatory cell-signalling pathways certainly appear to be crucial, but in the current review we highlight the concept that ROS/RNS-mediated protein damage creates neoepitopes, resulting in autoantibody formation against proteins, e.g. type-II collagen and the complement component, C1q. These autoantibodies have been detected in inflammatory autoimmune diseases.  相似文献   
102.
103.
Human induced pluripotent stem cells (HiPSCs) appear to be highly similar to human embryonic stem cells (HESCs). Using two genetic lineage-tracing systems, we demonstrate the generation of iPSC lines from human pancreatic islet beta cells. These reprogrammed cells acquired markers of pluripotent cells and differentiated into the three embryonic germ layers. However, the beta cell-derived iPSCs (BiPSCs) maintained open chromatin structure at key beta-cell genes, together with?a unique DNA methylation signature that distinguishes them from other PSCs. BiPSCs also demonstrated an increased ability to differentiate into insulin-producing cells both in?vitro and in?vivo, compared with ESCs and isogenic non-beta iPSCs. Our results suggest that the epigenetic memory may predispose?BiPSCs to differentiate more readily into insulin producing cells. These findings demonstrate that HiPSC phenotype may be influenced by their cells of origin, and suggest that their skewed differentiation potential may be advantageous for cell replacement therapy.  相似文献   
104.
Unprecedented developments in stem cell research herald a new era of hope and expectation for novel therapies. However, they also present a major challenge for regulators since safety assessment criteria, designed for conventional agents, are largely inappropriate for cell-based therapies. This article aims to set out the safety issues pertaining to novel stem cell-derived treatments, to identify knowledge gaps that require further research, and to suggest a roadmap for developing safety assessment criteria. It is essential that regulators, pharmaceutical providers, and safety scientists work together to frame new safety guidelines, based on "acceptable risk," so that patients are adequately protected but the safety "bar" is not set so high that exciting new treatments are lost.  相似文献   
105.
Human embryonic stem cells have the potential to differentiate into all human cell types and therefore hold a great therapeutic promise. Differentiation into the embryonic endoderm and its derivatives is of special interest since it can provide a cure for severe widespread clinical conditions such as diabetes and hepatic failure. In this work we established a unique experimental outline that enables the study of early human endoderm development and can help improve and create new differentiation protocols. To this end we started with mesendoderm cells and separated them into early endoderm and mesoderm progenitor cells using CXCR4 and PDGFRA cell surface markers. We molecularly characterized the different lineages, and demonstrated the importance of the TGFβ pathway in definitive endoderm initiation. The endoderm progenitor cells were then purified creating an endodermal differentiation niche that is not affected by other cell populations. We followed the differentiation of these cells at different time points, and demonstrated an up regulation of genes indicative to differentiation into both foregut and hindgut. Surprisingly, upon continued culture, there was significant down regulation of the hepatic gene signature. This down regulation could be rescued with FGF2 treatment demonstrating its importance in hepatic cell maintenance. In conclusion, we suggest that isolating endoderm progenitor cells is crucial for the analysis of their fate, and enables the identification of factors involved in their differentiation and maintenance.  相似文献   
106.
107.
108.
Methods for targeting biologicals to specific disease sites   总被引:2,自引:0,他引:2  
Cytokines are mediators of cell communication. Their therapeutic use requires frequent high doses to achieve effective local biological levels. However, the clinical use of some cytokines is limited because of their pleiotropism, which can result in unwanted side effects. Here, we review novel protein engineering technologies that overcome these limitations and enable the targeting of cytokines to specific sites. One such technology uses antibody-based recognition to direct the cytokine to a particular tissue, and another creates encapsulated latent cytokines that are released only at the site of disease. The latter method requires the overexpression of matrix-metalloproteinases, thereby exploiting the severity of the pathological process to regulate drug delivery. Because these technologies are based on the expression of fusion proteins, their application can be extended to other biologicals and can be delivered by gene therapy.  相似文献   
109.
We do not know the mode of action of the ketogenic diet in controlling epilepsy. One possibility is that the diet alters brain handling of glutamate, the major excitatory neurotransmitter and a probable factor in evoking and perpetuating a convulsion. We have found that brain metabolism of ketone bodies can furnish as much as 30% of glutamate and glutamine carbon. Ketone body metabolism also provides acetyl-CoA to the citrate synthetase reaction, in the process consuming oxaloacetate and thereby diminishing the transamination of glutamate to aspartate, a pathway in which oxaloacetate is a reactant. Relatively more glutamate then is available to the glutamate decarboxylase reaction, which increases brain [GABA]. Ketosis also increases brain [GABA] by increasing brain metabolism of acetate, which glia convert to glutamine. GABA-ergic neurons readily take up the latter amino acid and use it as a precursor to GABA. Ketosis also may be associated with altered amino acid transport at the blood-brain barrier. Specifically, ketosis may favor the release from brain of glutamine, which transporters at the blood-brain barrier exchange for blood leucine. Since brain glutamine is formed in astrocytes from glutamate, the overall effect will be to favor the release of glutamate from the nervous system.  相似文献   
110.
Organoleptic compounds produced by yeast during the fermentation of wort have a great impact on beer smell and taste. Among them, fusel alcohols are the major abundant volatile compounds. The availability of Saccharomyces cerevisiae mutants in which the genes coding for the two branched-chain amino acid aminotransferases have been deleted offers the possibility of further defining the role of these enzymes in the formation of higher alcohols. Comparing the production profiles of different strains, it is clear that they are not all influenced in the same way by branched-chain amino acid aminotransferase mutations. First of all, as propanol is synthesised from alpha-ketobutyrate, the first metabolic intermediate in the anabolic pathway of isoleucine, neither the eca39 nor eca40 mutations have any effect on the production of this higher alcohol. On the other hand, it can be concluded that the eca40 mutation has a drastic effect on the production of isobutanol. To a certain extent, the same conclusion can be made for the production of active amyl alcohol and isoamyl alcohol, although the results suggest that another route could lead to the formation of these two higher alcohols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号