全文获取类型
收费全文 | 124篇 |
免费 | 12篇 |
专业分类
136篇 |
出版年
2023年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 6篇 |
2015年 | 11篇 |
2014年 | 9篇 |
2013年 | 10篇 |
2012年 | 17篇 |
2011年 | 21篇 |
2010年 | 10篇 |
2009年 | 4篇 |
2008年 | 10篇 |
2007年 | 3篇 |
2006年 | 7篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 1篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1952年 | 2篇 |
1951年 | 1篇 |
1950年 | 1篇 |
排序方式: 共有136条查询结果,搜索用时 0 毫秒
41.
Simon E Alfred Anuradha Surendra Chris Le Ken Lin Alexander Mok Iain M Wallace Michael Proctor Malene L Urbanus Guri Giaever Corey Nislow 《Genome biology》2012,13(11):R105
Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility and simple genetics. We report the results of an automated fitness screen of 5,445 small molecules and subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core structures and was used to construct a naïve Bayes model that successfully predicts algal bioactive compounds. 相似文献
42.
Saranya Kittanakom Miriam Barrios-Rodiles Julia Petschnigg Anthony Arnoldo Victoria Wong Max Kotlyar Lawrence E. Heisler Igor Jurisica Jeffrey L. Wrana Corey Nislow Igor Stagljar 《Biochemical and biophysical research communications》2014
G-protein coupled receptors (GPCRs) are involved in a variety of disease processes and comprise major drug targets. However, the complexity of integral membrane proteins such as GPCRs makes the identification of their interacting partners and subsequent drug development challenging. A comprehensive understanding of GPCR protein interaction networks is needed to design effective therapeutic strategies to inhibit these drug targets. Here, we developed a novel split-ubiquitin membrane yeast two-hybrid (MYTH) technology called CHIP-MYTH, which allows the unbiased characterization of interaction partners of full-length GPCRs in a drug-dependent manner. This was achieved by coupling DNA microarray technology to the MYTH approach, which allows a quantitative evaluation of interacting partners of a given integral membrane protein in the presence or absence of drug. As a proof of principle, we applied the CHIP-MYTH approach to the human β2-adrenergic receptor (β2AR), a target of interest in the treatment of asthma, chronic obstructive pulmonary disease (COPD), neurological disease, cardiovascular disease, and obesity. A CHIP-MYTH screen was performed in the presence or absence of salmeterol, a long-acting β2AR-agonist. Our results suggest that β2AR activation with salmeterol can induce the dissociation of heterotrimeric G-proteins, Gαβγ, into Gα and Gβγ subunits, which in turn activates downstream signaling cascades. Using CHIP-MYTH, we confirmed previously known and identified novel β2AR interactors involved in GPCR-mediated signaling cascades. Several of these interactions were confirmed in mammalian cells using LUminescence-based Mammalian IntERactome (LUMIER) and co-immunoprecipitation assays. In summary, the CHIP-MYTH approach is ideal for conducting comprehensive protein-protein interactions (PPI) screenings of full-length GPCRs in the presence or absence of drugs, thus providing a valuable tool to further our understanding of GPCR-mediated signaling. 相似文献
43.
Zachary L. Robinson Jason A. Coombs Mark Hudy Keith H. Nislow Benjamin H. Letcher Andrew R. Whiteley 《Molecular ecology》2017,26(17):4418-4433
Genetic rescue is an increasingly considered conservation measure to address genetic erosion associated with habitat loss and fragmentation. The resulting gene flow from facilitating migration may improve fitness and adaptive potential, but is not without risks (e.g., outbreeding depression). Here, we conducted a test of genetic rescue by translocating ten (five of each sex) brook trout (Salvelinus fontinalis) from a single source to four nearby and isolated stream populations. To control for the demographic contribution of translocated individuals, ten resident individuals (five of each sex) were removed from each recipient population. Prior to the introduction of translocated individuals, the two smallest above‐barrier populations had substantially lower genetic diversity, and all populations had reduced effective number of breeders relative to adjacent below‐barrier populations. In the first reproductive bout following translocation, 31 of 40 (78%) translocated individuals reproduced successfully. Translocated individuals contributed to more families than expected under random mating and generally produced larger full‐sibling families. We observed relatively high (>20%) introgression in three of the four recipient populations. The translocations increased genetic diversity of recipient populations by 45% in allelic richness and 25% in expected heterozygosity. Additionally, strong evidence of hybrid vigour was observed through significantly larger body sizes of hybrid offspring relative to resident offspring in all recipient populations. Continued monitoring of these populations will test for negative fitness effects beyond the first generation. However, these results provide much‐needed experimental data to inform the potential effectiveness of genetic rescue‐motivated translocations. 相似文献
44.
Tamble CM St Onge RP Giaever G Nislow C Williams AG Stuart JM Lokey RS 《Molecular bioSystems》2011,7(6):2019-2030
High-throughput elucidation of synthetic genetic interactions (SGIs) has contributed to a systems-level understanding of genetic robustness and fault-tolerance encoded in the genome. Pathway targets of various compounds have been predicted by comparing chemical-genetic synthetic interactions to a network of SGIs. We demonstrate that the SGI network can also be used in a powerful reverse pathway-to-drug approach for identifying compounds that target specific pathways of interest. Using the SGI network, the method identifies an indicator gene that may serve as a good candidate for screening a library of compounds. The indicator gene is selected so that compounds found to produce sensitivity in mutants deleted for the indicator gene are likely to abrogate the target pathway. We tested the utility of the SGI network for pathway-to-drug discovery using the DNA damage checkpoint as the target pathway. An analysis of the compendium of synthetic lethal interactions in yeast showed that superoxide dismutase 1 (SOD1) has significant SGI connectivity with a large subset of DNA damage checkpoint and repair (DDCR) genes in Saccharomyces cerevisiae, and minimal SGIs with non-DDCR genes. We screened a sod1Δ strain against three National Cancer Institute (NCI) compound libraries using a soft agar high-throughput halo assay. Fifteen compounds out of ~3100 screened showed selective toxicity toward sod1Δ relative to the isogenic wild type (wt) strain. One of these, 1A08, caused a transient increase in growth in the presence of sublethal doses of DNA damaging agents, suggesting that 1A08 inhibits DDCR signaling in yeast. Genome-wide screening of 1A08 against the library of viable homozygous deletion mutants further supported DDCR as the relevant targeted pathway of 1A08. When assayed in human HCT-116 colorectal cancer cells, 1A08 caused DNA-damage resistant DNA synthesis and blocked the DNA-damage checkpoint selectively in S-phase. 相似文献
45.
46.
Competitive effects of younger cohorts on older ones are frequently assumed to be negligible in species where older, larger
individuals dominate in pairwise behavioural interactions. Here, we provide field estimates of such competition by recruits
on an older age class in Atlantic salmon (Salmo salar), a species where observational studies have documented strong body size advantages which should favour older individuals
in direct interactions. By creating realistic levels of spatial variation in the density of underyearling (YOY) recruits over
a 1-km stretch of a stream, and obtaining accurate measurements of individual growth rates of overyearlings (parr) from capture–mark–recapture
data on a fine spatial scale, we demonstrate that high YOY density can substantially decrease parr growth. Models integrating
multiple spatial scales indicated that parr were influenced by YOY density within 16 m. The preferred model suggested parr
daily mass increase to be reduced by 39% when increasing YOY density from 0.0 to 1.0 m−2, which is well within the range of naturally occurring densities. Reduced juvenile growth rates will in general be expected
to reduce juvenile survival (via increased length of exposure to freshwater mortality) and increase generation times (via
increased age at seaward migrations). Thus, increased recruitment can significantly affect the performance of older cohorts,
with important implications for population dynamics. Our results highlight that, even for the wide range of organisms that
rely on defendable resources, the direction of competition among age classes cannot be assumed a priori or be inferred from
behavioural observations alone. 相似文献
47.
Ericson E Gebbia M Heisler LE Wildenhain J Tyers M Giaever G Nislow C 《PLoS genetics》2008,4(8):e1000151
To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin structure. Interestingly, fluoxetine (Prozac) interfered with establishment of cell polarity, cyproheptadine (Periactin) targeted essential genes with chromatin-remodeling roles, while paroxetine (Paxil) interfered with essential RNA metabolism genes, suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic clozapine (Clozaril) had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol) and pimozide (Orap). Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes. 相似文献
48.
JM Tkach A Yimit AY Lee M Riffle M Costanzo D Jaschob JA Hendry J Ou J Moffat C Boone TN Davis C Nislow GW Brown 《Nature cell biology》2012,14(9):966-976
Relocalization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein reorganization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by subcellular destination enables the identification of pathways that respond to replication stress. We analysed pairwise combinations of GFP fusions and gene deletion mutants to define and order two previously unknown DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways. 相似文献
49.
David J Sewell Richard Turner Ray Field William Holmes Rahul Pradhan Christopher Spencer Stephen G Oliver Nigel KH Slater Duygu Dikicioglu 《Biotechnology and bioengineering》2019,116(6):1315-1325
Without a scale-down model for perfusion, high resource demand makes cell line screening or process development challenging, therefore, potentially successful cell lines or perfusion processes are unrealized and their ability untapped. We present here the refunctioning of a high-capacity microscale system that is typically used in fed-batch process development to allow perfusion operation utilizing in situ gravity settling and automated sampling. In this low resource setting, which involved routine perturbations in mixing, pH and dissolved oxygen concentrations, the specific productivity and the maximum cell concentration were higher than 3.0 × 106 mg/cell/day and 7 × 10 7 cells/ml, respectively, across replicate microscale perfusion runs conducted at one vessel volume exchange per day. A comparative analysis was conducted at bench scale with vessels operated in perfusion mode utilizing a cell retention device. Neither specific productivity nor product quality indicated by product aggregation (6%) was significantly different across scales 19 days after inoculation, thus demonstrating this setup to be a suitable and reliable platform for evaluating the performance of cell lines and the effect of process parameters, relevant to perfusion mode of culturing. 相似文献
50.
Dr Yuri N. Korystov Maksim O. Emel'yanov Antonina F. Korystova Mariya KH. Levitman Vera V. Shaposhnikova 《Free radical research》2013,47(2):149-155
A method for the determination of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in macroscopic sections of vessels has been developed on the basis of the dichlorofluorescein (DCF) assay. DCF was measured by fluorescence in extracts of vessels. The main artifact of the method is the oxidation of dichlorodihydrofluorescein (DCFH2) which is released from vessels together with DCF during the extraction procedure. This problem was resolved by decreasing pH during the extraction. The optimal conditions and the time for aorta incubation with DCFH2-DA and for the extraction of DCF from aorta have been determined. The ROS/RNS production in different aorta segments and the dependence of ROS/RNS production on rat age have been studied. It was shown that thoracic aorta sections produced the same amounts of ROS/RNS and the intermediate between the thoracic and the abdominal aorta part produced ROS and RNS by 14% more than the thoracic aorta. It was found that ROS/RNS production in aorta increases with rat age: the doubling time of ROS/RNS production rate is 113 days from birth. 相似文献