首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   818篇
  免费   56篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   8篇
  2016年   9篇
  2015年   15篇
  2014年   20篇
  2013年   44篇
  2012年   43篇
  2011年   55篇
  2010年   23篇
  2009年   16篇
  2008年   70篇
  2007年   54篇
  2006年   49篇
  2005年   55篇
  2004年   64篇
  2003年   41篇
  2002年   49篇
  2001年   14篇
  2000年   21篇
  1999年   19篇
  1998年   9篇
  1997年   11篇
  1996年   6篇
  1995年   16篇
  1994年   9篇
  1993年   7篇
  1992年   10篇
  1991年   9篇
  1990年   14篇
  1989年   9篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1976年   5篇
  1975年   3篇
  1974年   8篇
  1972年   4篇
  1967年   5篇
  1964年   2篇
排序方式: 共有874条查询结果,搜索用时 46 毫秒
761.
We have developed a time-resolved fluoroimmunoassay (TR-FIA) for a lipid peroxide 4-hydroxynonenal (HNE), which is 100-fold more sensitive than conventional enzyme-linked immunosorbent assay (ELISA) and is an easier technique to use for a large number of samples without pre-treatment. By this assay, we found that a low dose of bacterial lipo-polysaccharide (LPS), injected intra-peritoneally (0.5 mg/kg), increased serum HNE level by 28-folds, with a peak at 20 min. LPS also increased HNE in vitro to a much higher level in the monocyte-enriched plasma than in the leukocyte-enriched plasma, with a peak at 10 min. The HNE production after LPS treatment was inhibited by apocynin, a specific NADPH oxidase inhibitor in vivo and in vitro, and to a lesser extent by dimethylsulfoxide a solvent for apocynin and a hydroxyl radical scavenger in vitro. These data suggest that monocyte NADPH oxidase is involved in the lipid peroxidation (HNE formation) in the LPS-challenged rat. This is the first clear demonstration of the link between an inflammatory stimulus and lipid peroxidation in the blood.  相似文献   
762.
In chronic renal failure (CRF), dietary protein is one of the factors that deteriorates residual renal functions. Numerous studies have indicated that the products of protein digestion are mainly absorbed as small peptides. However, how small peptides are absorbed in CRF remains poorly understood. H(+)-coupled peptide transporter (PEPT1/SLC15A1) plays an important role in the absorption of small peptides and peptide-like drugs in the small intestine. Because dietary protein intake is one of the risk factors for renal failure, the alteration of intestinal PEPT1 might have implications in the progression of renal disease as well as the pharmacokinetics of peptide-like drugs. In this study, we examined the alteration of intestinal PEPT1 in 5/6 nephrectomized (5/6 NR) rats, extensively used as a model of chronic renal failure. Absorption of [(14)C]glycylsarcosine and ceftibuten was significantly increased in 5/6 NR rats compared with sham-operated rats, without a change in intestinal protease activity. Western blot analysis indicated that the amount of intestinal PEPT1 protein in 5/6 NR rats was increased mainly at the upper region. On the other hand, the amount of intestinal PEPT1 mRNA was not significantly different from that of sham-operated rats. These findings indicate that the increase in absorption of small peptides and peptide-like drugs, caused by the upregulation of intestinal PEPT1 protein, might contribute to the progression of renal failure as well as the alteration of drug pharmacokinetics.  相似文献   
763.
Recent advances in genomic studies and the sequenced genome information have made it possible to utilize phenotypic mutants for characterizing relevant genes at the molecular level and reveal their functions. Various mutants and strains expressing phenotypic and physiological variations provide an indispensable source for functional analysis of genes. In this review, we cover almost all of the rice mutants found to date and the variant strains that are important in developmental, physiological and agronomical studies. Mutants and genes showing defects in vegetative organs, i.e. leaf, culm and root, inflorescence reproductive organ and seeds with an embryo and endosperm are described with regards to their phenotypic and molecular characteristics. A variety of alleles detected by quantitative trait locus analysis, such as heading date, disease/insect resistance and stress tolerance, are also shown.  相似文献   
764.
765.
Nitrogen-containing analogs of chrysene, 1,10-diazachrysene (1,10-DAC) and 4,10-DAC, were tested for mutagenicity in Salmonella typhimurium TA100 in the presence of rat liver S9 and human liver microsomes to investigate the effect of nitrogen-substitution. Although these DACs could not be converted to the bay-region diol epoxide because of their nitrogen atoms in the bay-region epoxide or diol moiety, DACs were mutagenic in the Ames test with rat liver S9. Both DACs also showed mutagenicity in the Ames test using pooled human liver microsomes, although chrysene itself was not mutagenic in the presence of pooled human liver microsomes. The mutagenicity of DACs (50nmol/plate) in Ames tests using human liver microsome preparations from 10 individuals was compared with cytochrome P450 (CYP) activity in each microsome preparation to investigate the CYP isoform involved in the activation of DACs to the genotoxic forms. The numbers of induced revertants obtained by 1,10-DAC varied 6.2-folds (109-680) and those by 4,10-DAC 4.8-folds (155-751) among the 10 individuals. The number of induced revertants obtained by 1,10-DAC significantly correlated with the CYP1A2-selective catalytic activity (r=0.84, P<0.01) in each microsome preparation. On the other hand, the number of induced revertants obtained by 4,10-DAC significantly correlated with the combined activity of CYP2A6 and 1A2 (CYP2A6+0.51xCYP1A2; r=0.75, P<0.01). However, in Ames tests using microsomes from insect cells expressing various human CYP isoforms, the mutagenicity of 1,10-DAC was induced only by recombinant human CYP1A2, whereas both recombinant human CYP2A6 and 1A2 contributed to the mutagenicity of 4,10-DAC. These results suggest that 1,10-DAC shows the mutagenicity through involvement of CYP1A2 in human liver, and 4,10-DAC does so through both CYP2A6 and 1A2. In conclusion, our results suggested that the difference in the nitrogen-substituted position in the chrysene molecule might affect the mutagenic activity through influencing the ratio of participation of the metabolic activation enzyme isoforms of CYP.  相似文献   
766.
CHO-K1 cells were able to proliferate and maintain pHi homeostasis at pH 6.3. A novel acidic sensitive mutant, AS-5B, which proliferated at pH 7.4 but failed to either proliferate or maintain pHi homeostasis at pH 6.3, was derived from CHO-K1 using a replica method. The acidic-sensitivity of AS-5B was not due to deficiencies in sodium proton exchangers, HCO3- (co)transporters or H+-ATPases. A cDNA clone encoding a COOH terminal region of IkappaB-beta conferred partial acidic-resistance on AS-5B, and the encoded protein was present in CHO-K1, but was nearly absent from AS-5B. Our data demonstrated that the expression of this small protein was essential for the proliferation of CHO cells under acidic stress.  相似文献   
767.
Androgen has anabolic effects on cardiac myocytes and has been shown to enhance left ventricular enlargement and function. However, the physiological and patho-physiological roles of androgen in cardiac growth and cardiac stress-induced remodeling remains unclear. We aimed to clarify whether the androgen-nuclear androgen receptor (AR) system contributes to the cardiac growth and angiotensin II (Ang II)-stimulated cardiac remodeling by using systemic AR-null male mice. AR knock-out (ARKO) male mice, at 25 weeks of age, and age-matched wild-type (WT) male mice were treated with or without Ang II stimulation (2.0 mg/kg/day) for 2 weeks. ARKO mice with or without Ang II stimulation showed a significant reduction in the heart-to-body weight ratio compared with those of WT mice. In addition, echocardiographic analysis demonstrated impairments of both the concentric hypertrophic response and left ventricular function in Ang II-stimulated ARKO mice. Western blot analysis of the myocardium revealed that activation of extracellular signal-regulated kinases (ERK) 1/2 and ERK5 by Ang II stimulation were lower in ARKO mice than those of WT mice. Ang II stimulation caused more prominent cardiac fibrosis in ARKO mice than in WT mice with enhanced expression of types I and III collagen and transforming growth factor-beta1 genes and with increased Smad2 activation. These results suggest that, in male mice, the androgen-AR system participates in normal cardiac growth and modulates cardiac adaptive hypertrophy and fibrosis during the process of cardiac remodeling under hypertrophic stress.  相似文献   
768.
Vascular smooth muscle cell contraction and relaxation are directly related to the phosphorylation state of the regulatory myosin light chain. Myosin light chains are dephosphorylated by myosin phosphatase, leading to vascular smooth muscle relaxation. Myosin phosphatase is localized not only at actin-myosin stress fibers where it dephosphorylates myosin light chains, but also in the cytoplasm and at the cell membrane. The mechanisms by which myosin phosphatase is targeted to these loci are incompletely understood. We recently identified myosin phosphatase-Rho interacting protein as a member of the myosin phosphatase complex that directly binds both the myosin binding subunit of myosin phosphatase and RhoA and is localized to actin-myosin stress fibers. We hypothesized that myosin phosphatase-Rho interacting protein targets myosin phosphatase to the contractile apparatus to dephosphorylate myosin light chains. We used RNA interference to silence the expression of myosin phosphatase-Rho interacting protein in human vascular smooth muscle cells. Myosin phosphatase-Rho interacting protein silencing reduced the localization of the myosin binding subunit to stress fibers. This reduction in stress fiber myosin phosphatase-Rho interacting protein and myosin binding subunit increased basal and lysophosphatidic acid-stimulated myosin light chain phosphorylation. Neither cellular myosin phosphatase, myosin light chain kinase, nor RhoA activities were changed by myosin phosphatase-Rho interacting protein silencing. Furthermore, myosin phosphatase-Rho interacting protein silencing resulted in marked phenotypic changes in vascular smooth muscle cells, including increased numbers of stress fibers, increased cell area, and reduced stress fiber inhibition in response to a Rho-kinase inhibitor. These data support the importance of myosin phosphatase-Rho interacting protein-dependent targeting of myosin phosphatase to stress fibers for regulating myosin light chain phosphorylation state and morphology in human vascular smooth muscle cells.  相似文献   
769.
Previous studies have indicated that the Undulated short-tail deletion mutation in mouse Pax1 (Pax1(Un-s)) not only ablates Pax1, but also disturbs a gene or genes nearby Pax1. However, which gene(s) is involved and how the Pax1(Un-s) phenotype is confined to the Pax1-positive tissues remain unknown. In the present study, we determined the Pax1(Un-s) deletion interval to be 125 kb and characterized genes around Pax1. We show that the Pax1(Un-s) mutation affects four physically linked genes within or near the deletion, including Pax1, Nkx2-2, and their potential antisense genes. Remarkably, Nkx2-2 is ectopically activated in the sclerotome and limb buds of Pax1(Un-s) embryos, both of which normally express Pax1. This result suggests that the Pax1(Un-s) deletion leads to an illegitimate interaction between remotely located Pax1 enhancers and the Nkx2-2 promoter by disrupting an insulation mechanism between Pax1 and Nkx2-2. Furthermore, we show that expression of Bapx1, a downstream target of Pax1, is more strongly affected in Pax1(Un-s) mutants than in Pax1-null mutants, suggesting that the ectopic expression of Nkx2-2 interferes with the Pax1-Bapx1 pathway. Taken together, we propose that a combination of a loss-of-function mutation of Pax1 and a gain-of-function mutation of Nkx2-2 is the molecular basis of the Pax1(Un-s) mutation.  相似文献   
770.
The nucleocapsid protein of HIV-1 consists of two basic amino acid regions and two zinc fingers. We investigated the requirement of these domains for the structural conversion of a 39mer RNA covering the dimerization initiation site by using three peptides; wild-type NCp7, a mutant in which the two zinc fingers are mutated, and another mutant in which the two zinc fingers are deleted. The two mutants exhibited similar conversion activities to each other, which were lower than that of the wild-type, indicating that the two basic regions exhibit some activity for RNA chaperone, as we suggested before, and the zinc fingers enhance the efficiency of this activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号