首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   47篇
  国内免费   1篇
  2023年   4篇
  2021年   7篇
  2020年   6篇
  2019年   3篇
  2018年   7篇
  2017年   13篇
  2016年   6篇
  2015年   14篇
  2014年   26篇
  2013年   34篇
  2012年   29篇
  2011年   35篇
  2010年   16篇
  2009年   12篇
  2008年   29篇
  2007年   41篇
  2006年   21篇
  2005年   27篇
  2004年   38篇
  2003年   29篇
  2002年   30篇
  2001年   20篇
  2000年   16篇
  1999年   23篇
  1998年   13篇
  1997年   10篇
  1996年   3篇
  1995年   11篇
  1994年   9篇
  1993年   8篇
  1992年   10篇
  1991年   6篇
  1990年   7篇
  1989年   7篇
  1988年   19篇
  1987年   11篇
  1986年   8篇
  1985年   10篇
  1984年   8篇
  1983年   7篇
  1982年   8篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   7篇
  1972年   2篇
  1970年   8篇
  1969年   4篇
  1967年   4篇
排序方式: 共有695条查询结果,搜索用时 470 毫秒
121.
122.
123.
Cell surface glycans are tissue-specific and developmentally regulated. They function as essential modulators in cell-cell interactions, cell-extracellular matrix interactions, and ligand-receptor interactions, binding to various ligands, including Wnt, fibroblast growth factors, and bone morphogenetic proteins. Embryonic stem (ES) cells, originally derived from the inner cell mass of blastocysts, have the essential characteristics of pluripotency and self-renewal. Recently, it has been proposed that mouse and human conventional ES cells are present in different developmental stages, namely pre-implantation blastocyst and post-implantation blastocyst stages, also called the naïve state and the primed state, respectively. They therefore require different extrinsic signals for the maintenance of self-renewal and pluripotency, and also appear to require different surface glycans. Understanding of molecular mechanisms involving glycans in self-renewal and pluripotency of ES cells is increasingly important for potential clinical applications, as well as for basic research. This review focuses on the roles of glycans in the two different states of pluripotent stem cells, namely the naïve state and the primed state, and the transition between these two states.  相似文献   
124.
By using two-dimensional polyacrylamide gel electrophoresis, a proteomic analysis over time was conducted with high-cell-density, industrial, phosphate-limited Escherichia coli fermentations at the 10-liter scale. During production, a recombinant, humanized antibody fragment was secreted and assembled in a soluble form in the periplasm. E. coli protein changes associated with culture conditions were distinguished from protein changes associated with heterologous protein expression. Protein spots were monitored quantitatively and qualitatively. Differentially expressed proteins were quantitatively assessed by using a t-test method with a 1% false discovery rate as a significance criterion. As determined by this criterion, 81 protein spots changed significantly between 14 and 72 h (final time) of the control fermentations (vector only). Qualitative (on-off) comparisons indicated that 20 more protein spots were present only at 14 or 72 h in the control fermentations. These changes reflected physiological responses to the culture conditions. In control and production fermentations at 72 h, 25 protein spots were significantly differentially expressed. In addition, 19 protein spots were present only in control or production fermentations at this time. The quantitative and qualitative changes were attributable to overexpression of recombinant protein. The physiological changes observed during the fermentations included the up-regulation of phosphate starvation proteins and the down-regulation of ribosomal proteins and nucleotide biosynthesis proteins. Synthesis of the stress protein phage shock protein A (PspA) was strongly correlated with synthesis of a recombinant product. This suggested that manipulation of PspA levels might improve the soluble recombinant protein yield in the periplasm for this bioprocess. Indeed, controlled coexpression of PspA during production led to a moderate, but statistically significant, improvement in the yield.  相似文献   
125.
Efficient reproduction using natural mating and reproduction technology [in vitro fertilization (IVF) and embryo transfer (ET)] was investigated in IRS2 deficient mice with C57BL/6JJcl genetic background (Irs2(-/-) mice) as a typical type 2 diabetes model. From the results using various combinations of Irs2(-/-) and Irs2(-/+) mice, the combination of female Irs2(-/+) x male Irs2(-/-) was found to be more efficient than other combinations. In applications of reproduction technology using IVF and ET, the combination of female Irs2(-/+) x male Irs2(-/-) involves the possibility of Irs2(-/-) production by repeats using female Irs2(-/+) mice. However, reproductive continuity using this combination is difficult because of dependence on human technique and the cost of ET. Therefore, we concluded that Irs2(-/-) mice should be produced by embryo transfer using Irs2(-/-) mice from a colony consisting of female Irs2(-/+) x male Irs2(-/-).  相似文献   
126.
Phospholipase A1 is a hydrolytic enzyme that catalyzes the removal of the acyl group from position 1 of glycerophospholipids to form 2-acyl lysophospholipids. Lysophospholipids are used in foods, cosmetics, and pharmaceuticals as surfactants. Novel forms of phospholipase A1 that function at low temperatures are desirable for use in lipophilic systems in food processing. However, there is currently little variety in the available sources of phospholipase A1. Given this situation, we screened the intestinal contents of marine animals for phospholipase A1-producing bacteria. Colonies that formed a halo on K28CP screening medium and that grew in K28 medium were cultured in liquid K28 medium, and the supernatant was retrieved for analysis. Phosphatidylcholine was added to the culture supernatant, and the product of the reaction was analyzed by using TLC. For culture supernatants that were able to generate lysophosphatidylcholine, synthetic phosphatidylcholines were added, and the site of the reaction was determined by analyzing the fatty acid compositions of the lysophosphatidylcholines generated by GLC. A bacterial isolate from a flatfish, which we named HFKI0020, was found to have phospholipase A1 activity at low temperatures. We determined that the isolate HFKI0020 is closely related to Pseudomonas by using 16S rDNA sequence analysis and by characterizing the isolate with respect to its physiologic and biochemical properties. From the intestinal contents of a marine fish, we successfully isolated a bacterium that secretes phospholipase A1 that is active at low temperatures.  相似文献   
127.
In some pathological conditions such as Duchenne muscular dystrophy, it has been known that a fatty infiltration in skeletal muscle is often observed and that is also one of primary factors to induce marked decline of muscular strength. However, the mechanism of fatty infiltration, cellular origin of accumulated adipocytes and its significance are not fully understood. The fact that persistent degenerative muscle fibers are present on dystrophic muscle leads us to hypothesize that muscle fiber condition affects fatty infiltration in skeletal muscle. We employed a single fiber culture system to determine whether fiber condition affects an appearance of adipocytes on the fibers. Artificially hyper-contracted muscle fibers (HCF), generated from isolated intact fibers (IF) of rat extensor digitrum longus muscle, were maintained as non-adherent cultures for 5–7 days. Interestingly, there appeared to be considerable numbers of mature adipocytes on HCF, whereas no adipocytes were seen on IF, indicating that cells on HCF spontaneously differentiated into mature adipocytes. Activation of RhoA signaling by the addition of thrombin decreased the number of adipocytes on HCF in a dose-dependent manner, whereas the number of MyoD-positive myoblasts increased. In contrast, Y-27632, a specific inhibitor of Rho kinases (ROCK), induced adipogenic differentiation of cells derived from IF. In addition, administration of Y-27632 into mouse regenerating muscle resulted in fat accumulation in the muscle. Taken together, the present studies clearly demonstrated that muscle fiber condition affects fat accumulation in skeletal muscle and that is possibly mediated by the RhoA signaling pathway.  相似文献   
128.
129.
Summary The lysine biosynthetic genes asd, dapA, and dapB, encoding aspartate semialdehyde dehydrogenase (ASADH), dihydrodipicolinate synthase (DHPS), and dihydrodipicolinate reductase (DHPR), respectively, have been cloned from Lactobacillus plantarum IAM 12477 by heterologous complementation to Escherichia coli mutants. The amino acid sequences of the cloned genes showed considerable similarities to the corresponding protein from other gram-positive bacteria. We identified the amino acids that correspond to key catalytic residues of ASADH, DHPS, and DHPR and found them to be conserved in the protein from L. plantarum. ASADH, DHPS, and DHPR activity was detected in the cell extracts of E. coli mutant harboring each gene, indicating that the cloned genes were functionally expressed in E. coli. The regulation of ASADH, DHPS, and DHPR were studied in the cell extracts of both the E.␣coli mutant harboring the gene and L. plantarum; however, those enzymes were found not to be regulated by the end products of the pathway. This paper represents a portion of the thesis submitted by M. N. Cahyanto to Osaka University as partial fulfillment of the requirements for the PhD degree.  相似文献   
130.
A novel transgene silencing phenomenon was found in the ornamental plant, gentian (Gentiana triflora × G. scabra), in which the introduced Cauliflower mosaic virus (CaMV) 35S promoter region was strictly methylated, irrespective of the transgene copy number and integrated loci. Transgenic tobacco having the same vector did not show the silencing behavior. Not only unmodified, but also modified 35S promoters containing a 35S enhancer sequence were found to be highly methylated in the single copy transgenic gentian lines. The 35S core promoter (−90)-introduced transgenic lines showed a small degree of methylation, implying that the 35S enhancer sequence was involved in the methylation machinery. The rigorous silencing phenomenon enabled us to analyze methylation in a number of the transgenic lines in parallel, which led to the discovery of a consensus target region for de novo methylation, which comprised an asymmetric cytosine (CpHpH; H is A, C or T) sequence. Consequently, distinct footprints of de novo methylation were detected in each (modified) 35S promoter sequence, and the enhancer region (−148 to −85) was identified as a crucial target for de novo methylation. Electrophoretic mobility shift assay (EMSA) showed that complexes formed in gentian nuclear extract with the −149 to −124 and −107 to −83 region probes were distinct from those of tobacco nuclear extracts, suggesting that the complexes might contribute to de novo methylation. Our results provide insights into the phenomenon of sequence- and species- specific gene silencing in higher plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号