首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   43篇
  2023年   4篇
  2021年   11篇
  2020年   7篇
  2019年   5篇
  2018年   5篇
  2017年   13篇
  2016年   10篇
  2015年   14篇
  2014年   32篇
  2013年   19篇
  2012年   27篇
  2011年   30篇
  2010年   19篇
  2009年   14篇
  2008年   27篇
  2007年   37篇
  2006年   16篇
  2005年   22篇
  2004年   26篇
  2003年   24篇
  2002年   25篇
  2001年   18篇
  2000年   16篇
  1999年   21篇
  1998年   9篇
  1997年   5篇
  1995年   10篇
  1994年   5篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   19篇
  1987年   11篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1970年   8篇
  1969年   4篇
  1967年   4篇
排序方式: 共有619条查询结果,搜索用时 15 毫秒
31.
This study focuses on clarifying the contribution of sulfation to radiation-induced apoptosis in human Burkitt’s lymphoma cell lines, using 3′-phosphoadenosine 5′-phosphosulfate transporters (PAPSTs). Overexpression of PAPST1 or PAPST2 reduced radiation-induced apoptosis in Namalwa cells, whereas the repression of PAPST1 expression enhanced apoptosis. Inhibition of PAPST slightly decreased keratan sulfate (KS) expression, so that depletion of KS significantly increased radiation-induced apoptosis. In addition, the repression of all three N-acetylglucosamine-6-O-sulfotransferases (CHST2, CHST6, and CHST7) increased apoptosis. In contrast, PAPST1 expression promoted the phosphorylation of p38 MAPK and Akt in irradiated Namalwa cells. These findings suggest that 6-O-sulfation of GlcNAc residues in KS reduces radiation-induced apoptosis of human Burkitt’s lymphoma cells.  相似文献   
32.
The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope). Knockdown of 3OST-5 reduced Fas signaling and the potential for the transition to mEpiSCLCs. This indicates that the HS4C3-binding epitope is necessary for the transition to the primed state. We propose that Fas signaling through the HS4C3-binding epitope contributes to the transition from the naïve state to the primed state.  相似文献   
33.
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.  相似文献   
34.

Background

Adaptation changes in postural control and contingent negative variation (CNV) for the elderly were investigated during repeated forward floor translation.

Methods

Fifteen healthy elderly persons, living in the suburban area of Kanazawa City, Japan, underwent backward postural disturbance by a forward-floor translation (S2) 2 s after an auditory warning signal (S1). A set with 20 trials was repeated until a negative peak of late CNV was recognized in the 600-ms period before S2, and the last set was defined as the final set. Electroencephalograms, center of foot pressure in the anteroposterior direction (CoPap), and electromyograms of postural muscles were analyzed.

Results

CoPap displacement generated by the floor translation was significantly decreased until the twelfth trial in the first set, and mean CoPap displacement was smaller in the second and final sets than in the first set. The mean displacement was significantly smaller in the final set than the previous set. A late CNV with a negative peak was not recognized in the first and second sets. However, most subjects (13/15) showed a negative peak by the fourth set, when the late CNV started to increase negatively from about 1,000 ms after S1 and peaked at about 300 ms before S2. At about 160 ms before the CNV peak, the CoPap forward shift started. The increase in timing of the gastrocnemius activity related to the CoPap shift was significantly correlated with the CNV peak timing (r = 0.64). After S2, peak amplitudes of the anterior postural muscles were significantly decreased in the final set compared to the first set.

Conclusions

It was demonstrated that even for the elderly, with so many repetitions of postural disturbance, a late CNV with a negative peak was recognized, leading to accurate postural preparation. This suggests the improvement of frontal lobe function (e.g., anticipatory attention and motor preparation) in the elderly.  相似文献   
35.
36.
Spatial genetic structure (SGS) of plants mainly depends on the effective population size and gene dispersal. Maternally inherited loci are expected to have higher genetic differentiation between populations and more intensive SGS within populations than biparentally inherited loci because of smaller effective population sizes and fewer opportunities of gene dispersal in the maternally inherited loci. We investigated biparentally inherited nuclear genotypes and maternally inherited chloroplast haplotypes of microsatellites in 17 tree populations of three wild cherry species under different conditions of tree distribution and seed dispersal. As expected, interpopulation genetic differentiation was 6–9 times higher in chloroplast haplotypes than in nuclear genotypes. This difference indicated that pollen flow 4–7 times exceeded seed flow between populations. However, no difference between nuclear and chloroplast loci was detected in within‐population SGS intensity due to their substantial variation among the populations. The SGS intensity tended to increase as trees became more aggregated, suggesting that tree aggregation biased pollen and seed dispersal distances toward shorter. The loss of effective seed dispersers, Asian black bears, did not affect the SGS intensity probably because of mitigation of the bear loss by other vertebrate dispersers and too few tree generations after the bear loss to alter SGS. The findings suggest that SGS is more variable in smaller spatial scales due to various ecological factors in local populations.  相似文献   
37.
A sample treatment procedure and high-sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for quantitative determination of fexofenadine in human plasma was developed for a microdose clinical trial with a cold drug, i.e., a non-radioisotope-labeled drug. Fexofenadine and terfenadine, as internal standard, were extracted from plasma samples using a 96-well solid-phase extraction plate (Oasis HLB). Quantitation was performed on an ACQUITY UPLC system and an API 5000 mass spectrometer by multiple reaction monitoring. Chromatographic separation was achieved on an XBridge C18 column (100 mm x 2.1 mm i.d., particle size 3.5 microm) using acetonitrile/2 mM ammonium acetate (91:9, v/v) as the mobile phase at a flow rate of 0.6 ml/min. The analytical method was validated in accordance with the FDA guideline for validation of bioanalytical methods. The calibration curve was linear in the range of 10-1000 pg/ml using 200 microl of plasma. Analytical method validation for the clinical dose, for which the calibration curve was linear in the range of 1-500 ng/ml using 20 microl of plasma, was also conducted. Each method was successfully applied for making determinations in plasma using LC/ESI-MS/MS after administration of a microdose (100 microg solution) and a clinical dose (60 mg dose) in eight healthy volunteers.  相似文献   
38.
The molecular evolution processes underlying the acquisition of the placenta in eutherian ancestors are not fully understood. Mouse NCK-interacting kinase (NIK)-related kinase (NRK) is expressed highly in the placenta and plays a role in preventing placental hyperplasia. Here, we show the molecular evolution of NRK, which confers its function for inhibiting placental cell proliferation. Comparative genome analysis identified NRK orthologs across vertebrates, which share the kinase and citron homology (CNH) domains. Evolutionary analysis revealed that NRK underwent extensive amino acid substitutions in the ancestor of placental mammals and has been since conserved. Biochemical analysis of mouse NRK revealed that the CNH domain binds to phospholipids, and a region in NRK binds to and inhibits casein kinase-2 (CK2), which we named the CK2-inhibitory region (CIR). Cell culture experiments suggest the following: 1) Mouse NRK is localized at the plasma membrane via the CNH domain, where the CIR inhibits CK2. 2) This mitigates CK2-dependent phosphorylation and inhibition of PTEN and 3) leads to the inhibition of AKT signaling and cell proliferation. Nrk deficiency increased phosphorylation levels of PTEN and AKT in mouse placenta, supporting our hypothesis. Unlike mouse NRK, chicken NRK did not bind to phospholipids and CK2, decrease phosphorylation of AKT, or inhibit cell proliferation. Both the CNH domain and CIR have evolved under purifying selection in placental mammals. Taken together, our study suggests that placental mammals acquired the phospholipid-binding CNH domain and CIR in NRK for regulating the CK2–PTEN–AKT pathway and placental cell proliferation.  相似文献   
39.
1. Two isozymes of glutathione S-transferase (GST-dl1 and GST-dl2) were purified to homogeneity from dog lens. 2. The subunit size and the isoelectric point were determined to be 24,000 and > pI 9.5 for GST-dl1 and 22,000 and pI 8.1 for GST-dl2. 3. It was judged that GST-dl1 is a class alpha enzyme and GST-dl2 belongs to class pi on the basis of their immunological properties and N-terminal amino acid sequences. 4. The expression pattern of glutathione S-transferase isoenzymes in dog lens is different from that in pig, rat and bovine lenses.  相似文献   
40.
The factors SRC-1, TIF2 and ACTR were identified as interacting with nuclear receptors in a highly ligand-dependent manner. Because the molecular mass of each of these factors is approximately 160 kDa, they are collectively termed p160 coactivators. So far, p160 coactivators have been cloned from human, mouse and Xenopus. We report here the cloning of the chicken homologues of p160 coactivator members. As in human and mouse, chicken has three p160 coactivators. Each gene encodes an approximately 160 kDa protein which exhibits 70-80% amino acid sequence identity to human and mouse p160 coactivators. Chicken p160 coactivators also have the property of interacting with several liganded nuclear receptors. Moreover, we describe an imperfect LXXLL sequence, termed NR box 4, which is located downstream of NR box 3 and conserved between evolutionarily diverse species. The loss of NR box 4 results in a decrease of interaction with the nuclear receptor, which indicates that NR box 4 is required for efficient interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号