首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   43篇
  2023年   4篇
  2021年   11篇
  2020年   7篇
  2019年   5篇
  2018年   5篇
  2017年   13篇
  2016年   10篇
  2015年   14篇
  2014年   32篇
  2013年   19篇
  2012年   27篇
  2011年   30篇
  2010年   19篇
  2009年   14篇
  2008年   27篇
  2007年   37篇
  2006年   16篇
  2005年   22篇
  2004年   26篇
  2003年   24篇
  2002年   25篇
  2001年   18篇
  2000年   16篇
  1999年   21篇
  1998年   9篇
  1997年   5篇
  1995年   10篇
  1994年   5篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   19篇
  1987年   11篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1970年   8篇
  1969年   4篇
  1967年   4篇
排序方式: 共有619条查询结果,搜索用时 15 毫秒
101.
We report on the first successful output of electrons directly from photosystem I (PSI) of thermophilic cyanobacteria to the gate of a field-effect transistor (FET) by bypassing electron flow via a newly designed molecular wire, i.e., artificial vitamin K(1), and a gold nanoparticle; in short, this newly manufactured photosensor employs a bio-functional unit as the core of the device. Photo-electrons generated by the irradiation of molecular complexes composed of reconstituted PSI on the gate were found to control the FET. This PSI-bio-photosensor can be used to interpret gradation in images. This PSI-FET system is moreover sufficiently stable for use exceeding a period of 1 year.  相似文献   
102.
The GalNAcbeta1,4GlcNAc (LacdiNAc or LDN) structure is a more common structural feature in invertebrate glycoconjugates when compared with the Galbeta1,4GlcNAc structure. Recently, beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAcT) was identified in some invertebrates including Drosophila. However, the LDN structure has not been reported in Drosophila, and the biological function of LDN remains to be determined. In this study, we examined acceptor substrate specificity of Drosophila beta4GalNAcTA by using some N- and O-glycans on glycoproteins and neutral glycosphingolipids (GSLs). GalNAc was efficiently transferred toward N-glycans, O-glycans, and the arthro-series GSLs. Moreover, we showed that dbeta4GalNAcTA contributed to the synthesis of the LDN structure in vivo. The dbeta4GalNAcTA mRNA was highly expressed in the developmental and adult neuronal tissues. Thus, these results suggest that dbeta4GalNAcTA acts on the terminal GlcNAc residue of some glycans for the synthesis of LDN, and the LDN structure may play a role in the physiological or neuronal development of Drosophila.  相似文献   
103.
We report on the first successful output of electrons directly from photosystem I (PSI) of thermophilic cyanobacteria to the gate of a field-effect transistor (FET) by bypassing electron flow via a newly designed molecular wire, i.e., artificial vitamin K1, and a gold nanoparticle; in short, this newly manufactured photosensor employs a bio-functional unit as the core of the device. Photo-electrons generated by the irradiation of molecular complexes composed of reconstituted PSI on the gate were found to control the FET. This PSI-bio-photosensor can be used to interpret gradation in images. This PSI-FET system is moreover sufficiently stable for use exceeding a period of 1 year.  相似文献   
104.
105.
106.
In Methanobacterium thermoautotrophicum, sn-glycerol-1-phosphate (G-1-P) dehydrogenase is responsible for the formation of the Archaea-specific backbone of phospholipids, G-1-P, from dihydroxyacetonephosphate (DHAP). The possible G-1-P-forming activities were surveyed in cell-free extracts of six species of Archaea. All the archaeal cell-free homogenates tested revealed the ability to form G-1-P from DHAP. In addition, activities of G-3-P-forming glycerol kinase and G-3-P dehydrogenase were also detected in four heterotrophic archaea, while glycerol kinase activity was not detected in two autotrophic methanogens. These results show that G-1-P is produced from DHAP by G-1-P dehydrogenase in a wide variety of archaea while exogenous glycerol is catabolized via G-3-P.  相似文献   
107.
We found that the stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4 (CXCR4), is expressed on human CD34+ bone marrow (BM) cells. Stringently FACS-sorted CD34+CXCR4+ BM cells completely lack myeloid, erythroid, megakaryocytic, and mixed colony-forming potential (myeloid progenitors), but give rise to B and T lymphoid progenitors, whereas CD34+CXCR4- BM cells can generate colonies formed by myeloid progenitors and can also develop into these lymphoid progenitors. Therefore, expression of CXCR4 on CD34+ BM cells can allow lymphoid progenitors to be discriminated from myeloid progenitors. Because CD34+CXCR4+ cells are differentiated from CD34+CXCR4- cells, multipotential progenitors located in the BM are likely to be negative for CXCR4 expression. CXCR4 seems to be expressed earlier than the IL-7R and terminal deoxynucleotidyl transferase during early lymphohemopoiesis. These results suggest that the expression of CXCR4 on CD34+ BM cells is one of the phenotypic alterations for committed lymphoid progenitors.  相似文献   
108.
Osteoclast differentiation factor (ODF), a novel member of the TNF ligand family, is expressed as a membrane-associated protein by osteoblasts/stromal cells. The soluble form of ODF (sODF) induces the differentiation of osteoclast precursors into osteoclasts in the presence of M-CSF. Here, the effects of sODF on the survival, multinucleation, and pit-forming activity of murine osteoclasts were examined in comparison with those of M-CSF and IL-1. Osteoclast-like cells (OCLs) formed in cocultures of murine osteoblasts and bone marrow cells expressed mRNA of RANK (receptor activator of NF-kappaB), a receptor of ODF. The survival of OCLs was enhanced by the addition of each of sODF, M-CSF, and IL-1. sODF, as well as IL-1, activated NF-kappaB and c-Jun N-terminal protein kinase (JNK) in OCLs. Like M-CSF and IL-1, sODF stimulated the survival and multinucleation of prefusion osteoclasts (pOCs) isolated from the coculture. When pOCs were cultured on dentine slices, resorption pits were formed on the slices in the presence of either sODF or IL-1 but not in that of M-CSF. A soluble form of RANK as well as osteoprotegerin/osteoclastogenesis inhibitory factor, a decoy receptor of ODF, blocked OCL formation and prevented the survival, multinucleation, and pit-forming activity of pOCs induced by sODF. These results suggest that ODF regulates not only osteoclast differentiation but also osteoclast function in mice through the receptor RANK.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号