首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1363篇
  免费   77篇
  国内免费   3篇
  1443篇
  2022年   3篇
  2021年   8篇
  2020年   5篇
  2019年   12篇
  2018年   25篇
  2017年   17篇
  2016年   39篇
  2015年   34篇
  2014年   50篇
  2013年   111篇
  2012年   73篇
  2011年   85篇
  2010年   52篇
  2009年   48篇
  2008年   93篇
  2007年   100篇
  2006年   78篇
  2005年   87篇
  2004年   77篇
  2003年   77篇
  2002年   67篇
  2001年   17篇
  2000年   17篇
  1999年   14篇
  1998年   18篇
  1997年   17篇
  1996年   17篇
  1995年   25篇
  1994年   13篇
  1993年   11篇
  1992年   15篇
  1991年   10篇
  1990年   7篇
  1989年   11篇
  1988年   15篇
  1987年   8篇
  1986年   5篇
  1985年   9篇
  1984年   11篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   3篇
  1977年   6篇
  1976年   7篇
  1975年   3篇
  1973年   3篇
  1966年   2篇
排序方式: 共有1443条查询结果,搜索用时 15 毫秒
31.
Two flavonoid glucosyltransferases, UDP-glucose:flavonoid 3-O-glucosyltransferase (3-GT) and UDP-glucose: anthocyanin 5-O-glucosyltransferase (5-GT), are responsible for the glucosylation of anthocyani(di)ns to produce stable molecules in the anthocyanin biosynthetic pathway. The cDNAs encoding 3-GT and 5-GT were isolated from Petunia hybrida by hybridization screening with heterologous probes. The cDNA clones of 3-GT, PGT8, and 5-GT, PH1, encode putative polypeptides of 448 and 468 amino acids, respectively. A phylogenetic tree based on amino acid sequences of the family of glycosyltransferases from various plants shows that PGT8 belongs to the 3-GT subfamily and PH1 belongs to the 5-GT subfamily. The function of isolated cDNAs was identified by the catalytic activities for 3-GT and 5-GT exhibited by the recombinant proteins produced in yeast. The recombinant PGT8 protein could convert not only anthocyanidins but also flavonols into the corresponding 3-O-glucosides. In contrast, the recombinant PH1 protein exhibited a strict substrate specificity towards anthocyanidin 3-acylrutinoside, comparing with other 5-GTs from Perilla frutescens and Verbena hybrida, which showed broad substrate specificities towards several anthocyanidin 3-glucosides. The mRNA expression of both 3-GT and 5-GT increased in the early developmental stages of P. hybrida flower, reaching the maximum at the stage before flower opening. Southern blotting analysis of genomic DNA indicates that both 3-GT and 5-GT genes exist in two copies in P. hybrida, respectively. The results are discussed in relation to the molecular evolution of flavonoid glycosyltransferases.  相似文献   
32.
Dendritic cell (DC)-based cancer immunotherapy has been paid much attention as a new and cancer cell-specific therapeutic in the last decade; however, little clinical outcome has been reported. Current limitations of DC-based cancer immunotherapy include sparse information about which DC phenotype should be administered. We here report a unique, representative, and powerful method to activate DCs, namely recombinant Sendai virus-modified DCs (SeV/DC), for cancer immunotherapy. In vitro treatment of SeV without any bioactive gene solely led DCs to a mature phenotype. Even though the expression of surface markers for DC activation ex vivo did not always reach the level attained by an optimized amount of LPS, superior antitumor effects to B16F1 melanoma, namely tumor elimination and survival, were obtained with use of SeV-GFP/DC as compared with those seen with LPS/DC in vivo, and the effect was enhanced by SeV/DC-expressing IFN-beta (SeV-murine IFN-beta (mIFN-beta)/DC). In case of the treatment of an established tumor of B16F10 (7-9 mm in diameter), a highly malignant subline of B16 melanoma, SeV-modified DCs (both SeV-GFP/DC and SeV-mIFN-beta/DC), but not immature DC and LPS/DC, dramatically improved the survival of animals. Furthermore, SeV-mIFN-beta/DC but not other DCs could lead B16F10 tumor to the dormancy, associated with strongly enhanced CD8+ CTL responses. These results indicate that rSeV is a new and powerful tool as an immune booster for DC-based cancer immunotherapy that can be significantly modified by IFN-beta, and SeV/DC, therefore, warrants further investigation as a promising alternative for cancer immunotherapy.  相似文献   
33.
Summary A convenient and efficient method of NADPH production from NADP+ has been established using a glucose dehydrogenase system involving whole cells and immobilized cells of Gluconobacter suboxydans IFO 3172. Using airdried cells of the bacterium, the optimum conditions for NADPH production were examined, including the cell and glucose concentrations, NADP+ concentration, pH, buffer and reaction temperature. Under suitable conditions, the conversion ratio and the amount of NADPH accumulated reached about 100% and 73 mg/ml of the reaction mixture, respectively, after 1-h reaction. Intact cells of the bacterium also showed high NADPH production even in the reaction mixture without a surfactant. The addition of Triton X-100 to the reaction mixture and freeze-thawing treatment of intact cells enhanced the production. The NADPH production method was further improved by using cells of the bacterium immobilized by entrapment in a -carrageenan gel lattice. The immobilized cells had almost the same enzymatic properties as the air-dried cells. The conditions for the continuous production of NADPH with an immobilized cell column were also investigated. NADPH was produced in a good yield (about 95%) with this continuous process.  相似文献   
34.
35.
Reactive oxygen species (ROS) produced during exercise may be involved in delayed-onset muscle damage related to inflammation. To investigate this hypothesis, we studied whether oxidative stress increases nuclear translocation of nuclear factor-kappaB and chemokine expression in skeletal muscle using myotube L6 cells. We also assessed whether prolonged acute exercise could increase these parameters in rats. In L6 cells, H(2)O(2) induced nuclear translocation of p65 and increased the expression of cytokine-induced neutrophil chemoattractant-1 (CINC-1) and monocyte chemoattractant protein-1 (MCP-1), whereas preincubation with alpha-tocopherol limited the increase in these proteins. Sprague Dawley rats were divided into the following groups: rested control, exercised, rested with a high alpha-tocopherol diet, and exercised with a high alpha-tocopherol diet. After 3 weeks of acclimation, both exercise groups ran on a treadmill at 25 m/min for 60 min. Exercise increased nuclear p65, CINC-1, and MCP-1 in gastrocnemius muscle cells, but these changes were ameliorated by the high alpha-tocopherol diet. Increases in myeloperoxidase and thiobarbituric acid-reactive substrates were ameliorated by a high alpha-tocopherol diet, as were the histological changes. Neutrophil activity was not altered by either exercise or a high alpha-tocopherol diet. These results indicate that delayed-onset muscle damage induced by prolonged exercise is partly related to inflammation via phagocyte infiltration caused by ROS and that alpha-tocopherol (an antioxidant) can attenuate such inflammatory changes.  相似文献   
36.
The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI), which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously) and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE) solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates) at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains.  相似文献   
37.

Background

CHK1 is an important effector kinase that regulates the cell cycle checkpoint. Previously, we showed that CHK1 is cleaved in a caspase (CASP)-dependent manner during DNA damage-induced programmed cell death (PCD) and have examined its physiological roles.

Methods and results

In this study, we investigated the behavior of CHK1 in PCD. Firstly, we found that CHK1 is cleaved at three sites in PCD, and all cleavages were inhibited by the co-treatment of a pan-CASP inhibitor or serine protease inhibitors. We also showed that CHK1 is cleaved by CASP3 and/or CASP7 recognizing at 296SNLD299 and 348TCPD351, and that the cleavage results in the enhancement of CHK1 kinase activity. Furthermore, as a result of the characterization of cleavage sites by site-directed mutagenesis and an analysis performed using deletion mutants, we identified 320EPRT323 as an additional cleavage recognition sequence. Considering the consensus sequence cleaved by CASP, it is likely that CHK1 is cleaved by non-CASP family protease(s) recognizing at 320EPRT323. Additionally, the cleavage catalyzed by the 320EPRT323 protease(s) markedly and specifically increased when U2OS cells synchronized into G1 phase were induced to PCD by cisplatin treatment.

Conclusion

CHK1 cleavage is directly and indirectly regulated by CASP and non-CASP family proteases including serine protease(s) and the “320EPRT323 protease(s).” Furthermore, 320EPRT323 cleavage of CHK1 occurs efficiently in PCD which is induced at the G1 phase by DNA damage.

General significance

CASP and non-CASP family proteases intricately regulate cleavage for up-regulation of CHK1 kinase activity during PCD.  相似文献   
38.
The inhibitory effects of various fatty acids on three hyaluronidases (h-ST, h-SH and h-SD) and four chondroitinases (c-ABC, c-B, c-ACI and c-ACII) were examined, and their structure-activity relationships and mechanism of action were studied. The fatty acids used in this experiment showed various inhibitory activities against the enzymes. None of the fatty acids did not inhibit h-ST and h-SH. The saturated fatty acids (C 10:0 to C 22:0) showed very weak or no inhibition against h-SD, c-ABC, c-B, c-ACI and c-ACII but the unsaturated fatty acids (C 14:1 to C 24:1) with one double bond strongly inhibited the enzymes, and the inhibitory potency increased with increase in carbon chain length of the fatty acids. In contrast, the increase in number of double bonds caused a decrease in inhibitory potency against the enzymes. The position of the double bond and the stereochemistry of the cis - trans form of oleic acid (C 18:1) did not influence the inhibitory potency against the enzymes. Carboxyl and hydroxyl groups in the fatty acid molecule were concerned in the inhibition of c-ACI. Among the fatty acids, eicosatrienoic acid (C 20:3) generally inhibited h-SD, c-ABC, c-B and c-ACI, and nervonic acid (C 24:1) was a potent inhibitor of c-ACII, and the fatty acids inhibited the enzymes in a noncompetitive manner.  相似文献   
39.

Key message

RNAi-mediated suppression of the endogenous storage proteins in MucoRice-CTB-RNAi seeds affects not only the levels of overexpressed CTB and RAG2 allergen, but also the localization of CTB and RAG2.

Abstract

A purification-free rice-based oral cholera vaccine (MucoRice-CTB) was previously developed by our laboratories using a cholera toxin B-subunit (CTB) overexpression system. Recently, an advanced version of MucoRice-CTB was developed (MucoRice-CTB-RNAi) through the use of RNAi to suppress the production of the endogenous storage proteins 13-kDa prolamin and glutelin, so as to increase CTB expression. The level of the α-amylase/trypsin inhibitor-like protein RAG2 (a major rice allergen) was reduced in MucoRice-CTB-RNAi seeds in comparison with wild-type (WT) rice. To investigate whether RNAi-mediated suppression of storage proteins affects the localization of overexpressed CTB and major rice allergens, we generated an RNAi line without CTB (MucoRice-RNAi) and investigated gene expression, and protein production and localization of two storage proteins, CTB, and five major allergens in MucoRice-CTB, MucoRice-CTB-RNAi, MucoRice-RNAi, and WT rice. In all lines, glyoxalase I was detected in the cytoplasm, and 52- and 63-kDa globulin-like proteins were found in the aleurone particles. In WT, RAG2 and 19-kDa globulin were localized mainly in protein bodies II (PB-II) of the endosperm cells. Knockdown of glutelin A led to a partial destruction of PB-II and was accompanied by RAG2 relocation to the plasma membrane/cell wall and cytoplasm. In MucoRice-CTB, CTB was localized in the cytoplasm and PB-II. In MucoRice-CTB-RNAi, CTB was produced at a level six times that in MucoRice-CTB and was localized, similar to RAG2, in the plasma membrane/cell wall and cytoplasm. Our findings indicate that the relocation of CTB in MucoRice-CTB-RNAi may contribute to down-regulation of RAG2.  相似文献   
40.
The interaction of the alphaLbeta2 integrin with its cellular ligand the intercellular adhesion molecule-1 (ICAM-1) is critical for the tight binding interaction between most leukocytes and the vascular endothelium before transendothelial migration to the sites of inflammation. In this article we have modeled the alphaL subunit I-domain in its active form, which was computationally docked with the D1 domain of the ICAM-1 to probe potential protein-protein interactions. The experimentally observed key interaction between the carboxylate of Glu 34 in the ICAM-1 D1 domain and the metal ion-dependent adhesion site (MIDAS) in the open alphaL I-domain was consistently reproduced by our calculations. The calculations reveal the nature of the alphaLbeta2/ICAM-1 interaction and suggest an explanation for the increased ligand-binding affinity in the "open" versus the "closed" conformation of the alphaL I-domain. A mechanism for substrate selectivity among alphaL, alphaM, and alpha2 I-domains is suggested whereby the orientation of the loops within the I-domain is critical in mediating the interaction of the Glu 34 carboxylate of ICAM-1 D1 with the MIDAS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号