首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1701篇
  免费   88篇
  国内免费   1篇
  1790篇
  2023年   8篇
  2022年   15篇
  2021年   16篇
  2020年   8篇
  2019年   16篇
  2018年   27篇
  2017年   9篇
  2016年   40篇
  2015年   64篇
  2014年   66篇
  2013年   70篇
  2012年   96篇
  2011年   116篇
  2010年   64篇
  2009年   50篇
  2008年   85篇
  2007年   91篇
  2006年   70篇
  2005年   95篇
  2004年   82篇
  2003年   96篇
  2002年   87篇
  2001年   51篇
  2000年   32篇
  1999年   28篇
  1998年   22篇
  1997年   12篇
  1996年   12篇
  1995年   14篇
  1994年   8篇
  1993年   9篇
  1992年   34篇
  1991年   25篇
  1990年   33篇
  1989年   27篇
  1988年   21篇
  1987年   19篇
  1986年   14篇
  1985年   18篇
  1984年   14篇
  1983年   11篇
  1982年   14篇
  1981年   10篇
  1980年   8篇
  1979年   9篇
  1978年   16篇
  1976年   7篇
  1974年   7篇
  1969年   8篇
  1965年   5篇
排序方式: 共有1790条查询结果,搜索用时 31 毫秒
71.

Background

Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress.

Methodology

The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5.

Results

The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana.

Conclusions

Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases.  相似文献   
72.
AimWe performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and six susceptibility loci (TMEM154, SSR1, FAF1, POU5F1, ARL15, and MPHOSPH9) originally identified by a transethnic meta-analysis of genome-wide association studies (GWAS) in 2014.MethodsWe genotyped 7,620 Japanese participants (5,817 type 2 diabetes patients and 1,803 controls) for each of the single nucleotide polymorphisms (SNPs) using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using logistic regression analysis.ResultsOf the six SNPs examined in this study, four (rs6813195 near TMEM154, rs17106184 in FAF1, rs3130501 in POU5F1 and rs4275659 near MPHOSPH9) had the same direction of effect as in the original reports, but two (rs9505118 in SSR1 and rs702634 in ARL15) had the opposite direction of effect. Among these loci, rs3130501 and rs4275659 were nominally associated with type 2 diabetes (rs3130501; p = 0.017, odds ratio [OR] = 1.113, 95% confidence interval [CI] 1.019–1.215, rs4275659; p = 0.012, OR = 1.127, 95% CI 1.026–1.238, adjusted for sex, age and body mass index), but we did not observe a significant association with type 2 diabetes for any of the six evaluated SNP loci in our Japanese population.ConclusionsOur results indicate that effects of the six SNP loci identified in the transethnic GWAS meta-analysis are not major among the Japanese, although SNPs in POU5F1 and MPHOSPH9 loci may have some effect on susceptibility to type 2 diabetes in this population.  相似文献   
73.
Pituitary-dependent hyperadrenocorticism (PDH) is mainly caused by pituitary corticotroph tumors in dogs. A characteristic feature of corticotroph tumors is their resistance to negative feedback by glucocorticoids. In some animal species, including dogs, the aberrant expression of 11β-hydroxysteroid dehydrogenase (11HSD), a cortisol metabolic enzyme, is observed in corticotroph tumors. We previously reported that carbenoxolone (CBX), an inhibitor of 11HSD, suppressed ACTH secretion from the pituitary gland, and decreased cortisol concentrations in healthy dogs. Therefore, the aim of this study was to investigate the therapeutic effects of CBX on dogs with PDH. Six dogs with PDH were treated with 60 to 80 mg/kg/day of CBX for 6 weeks, followed by trilostane, which is a commonly used agent for canine PDH. CBX treatment led to a gradual decrease in both basal and in corticotropic releasing hormone (CRH)-stimulated plasma ACTH concentrations and CRH-stimulated serum cortisol concentrations, without side effects. However, basal and stimulated ACTH and cortisol concentrations remained higher than those of healthy dogs, and clinical symptoms such as polydipsia and polyuria were not ameliorated. After a 2-week wash-out interval, trilostane was administered for 2 weeks. Although basal plasma ACTH concentrations were higher after trilostane treatment than CBX treatment, polydipsia and polyuria resolved in all six dogs. The reason for the lack of improvement in polydipsia and polyuria with CBX treatment is unclear. Other mechanisms, in addition to a partial decrease in ACTH secretion, are likely to be involved. In conclusion, this is the first study to report the in vivo effects of CBX in dogs with PDH. The findings suggest that CBX inhibits ACTH secretion from canine pituitary tumors, resulting in lower cortisol concentrations.  相似文献   
74.
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.  相似文献   
75.
We herein report a practical one-step glucuronidation method by biotransformation using Streptomyces sp. SANK 60895. This novel direct method of biotransformation has been shown to be more practical and scalable for glucuronidation than previously reported chemical and enzymatic procedures given its simplicity, high β-selectivity, cost-effectiveness, and reproducibility. We applied the present method to the synthesis of acyl glucuronide and hydroxy-β-glucuronide of mycophenolic acid and compound 4, respectively. This method was also shown to be applicable to the N-glucuronidation of various compounds.  相似文献   
76.
Aldosterone has non-genomic effects that express within minutes and modulate intracellular ion milieu and cellular function. However, it is still undefined whether aldosterone actually alters intracellular ion concentrations or cellular contractility. To clarify the non-genomic effects of aldosterone, we measured [Na+]i, Ca2+ transient (CaT), and cell volume in dye-loaded rat ventricular myocytes, and we also evaluated myocardial contractility. We found the following: (i) aldosterone increased [Na+]i at the concentrations of 100 nmol/L to 10 micromol/L; (ii) aldosterone (up to 10 micromol/L) did not alter CaT and cell shortening in isolated myocytes, developed tension in papillary muscles, or left ventricular developed pressure in Langendorff-perfused hearts; (iii) aldosterone (100 nmol/L) increased the cell volume from 47.5 +/- 3.6 pL to 49.8 +/- 3.7 pL (n=8, p<0.05); (iv) both the increases in [Na+]i and cell volume were blocked by a Na+-K+-2Cl- co-transporter (NKCCl) inhibitor, bumetanide, or by a Na+/H+ exchange (NHE) inhibitor, 5-(N-ethyl-N-isopropyl) amiloride; and (v) spironolactone by itself increased in [Na+]i and cell volume. In conclusion, aldosterone rapidly increased [Na+]i and cell volume via NKCC1 and NHE, whereas there were no changes in CaT or myocardial contractility. Hence the non-genomic effects of aldosterone may be related to cell swelling rather than the increase in contractility.  相似文献   
77.
Legumain/asparaginyl endopeptidase (EC 3.4.22.34) is a novel cysteine protease that is abundantly expressed in the late endosomes and lysosomes of renal proximal tubular cells. Recently, emerging evidence has indicated that legumain might play an important role in control of extracellular matrix turnover in various pathological conditions such as tumor growth/metastasis and progression of atherosclerosis. We initially found that purified legumain can directly degrade fibronectin, one of the main components of the extracellular matrix, in vitro. Therefore, we examined the effect of legumain on fibronectin degradation in cultured mouse renal proximal tubular cells. Fibronectin processing can be inhibited by chloroquine, an inhibitor of lysosomal degradation, and can be enhanced by the overexpression of legumain, indicating that fibronectin degradation occurs in the presence of legumain in lysosomes from renal proximal tubular cells. Furthermore, in legumain-deficient mice, unilateral ureteral obstruction (UUO)-induced renal interstitial protein accumulation of fibronectin and renal interstitial fibrosis were markedly enhanced. These findings indicate that legumain might have an important role in extracellular matrix remodeling via the degradation of fibronectin in renal proximal tubular cells.  相似文献   
78.
79.
Pulmonary fibrosis is a progressive disorder whose molecular pathology is poorly understood. Here we developed an in-house cDNA microarray ("lung chip") originating from a lung-normalized cDNA library. By using this lung chip, we analyzed global gene expression in a murine model of bleomycin-induced fibrosis and selected 82 genes that differed by more than twofold intensity in at least one pairwise comparison with controls. Cluster analysis of these selected genes showed that the expression of genes associated with inflammation reached maximum levels at 5 days after bleomycin administration, while genes involved in the development of fibrosis increased gradually up to 14 days after bleomycin treatment. These changes in gene expression signature were well correlated with observed histopathological changes. The results show that microarray analysis of animal disease models is a powerful approach to understanding the gene expression programs that underlie these disorders.  相似文献   
80.
The 100-kDa "a" subunit of the vacuolar proton-translocating ATPase (V-ATPase) is encoded by two genes in yeast, VPH1 and STV1. The Vph1p-containing complex localizes to the vacuole, whereas the Stv1p-containing complex resides in some other intracellular compartment, suggesting that the a subunit contains information necessary for the correct targeting of the V-ATPase. We show that Stv1p localizes to a late Golgi compartment at steady state and cycles continuously via a prevacuolar endosome back to the Golgi. V-ATPase complexes containing Vph1p and Stv1p also differ in their assembly properties, coupling of proton transport to ATP hydrolysis, and dissociation in response to glucose depletion. To identify the regions of the a subunit that specify these different properties, chimeras were constructed containing the cytosolic amino-terminal domain of one isoform and the integral membrane, carboxyl-terminal domain from the other isoform. Like the Stv1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Stv1p localized to the Golgi and the complex did not dissociate in response to glucose depletion. Like the Vph1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Vph1p localized to the vacuole and the complex exhibited normal dissociation upon glucose withdrawal. Interestingly, the V-ATPase complex containing the chimera with the carboxyl-terminal domain of Vph1p exhibited a higher coupling of proton transport to ATP hydrolysis than the chimera containing the carboxyl-terminal domain of Stv1p. Our results suggest that whereas targeting and in vivo dissociation are controlled by sequences located in the amino-terminal domains of the subunit a isoforms, coupling efficiency is controlled by the carboxyl-terminal region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号