首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2016年   5篇
  2015年   4篇
  2014年   11篇
  2013年   7篇
  2012年   10篇
  2011年   3篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
  1993年   1篇
排序方式: 共有75条查询结果,搜索用时 46 毫秒
61.
The generation of tissue‐like structures in vitro is of major interest for various fields of research including in vitro toxicology, regenerative therapies and tissue engineering. Usually 3D matrices are used to engineer tissue‐like structures in vitro, and for the generation of kidney tubules, 3D gels are employed. Kidney tubules embedded within 3D gels are difficult to access for manipulations and imaging. Here we show how large and functional human kidney tubules can be generated in vitro on 2D surfaces, without the use of 3D matrices. The mechanism used by human primary renal proximal tubule cells for tubulogenesis on 2D surfaces appears to be distinct from the mechanism employed in 3D gels, and tubulogenesis on 2D surfaces involves interactions between epithelial and mesenchymal cells. The process is induced by transforming growth factor‐β1, and enhanced by a 3D substrate architecture. However, after triggering the process, the formation of renal tubules occurs with remarkable independence from the substrate architecture. Human proximal tubules generated on 2D surfaces typically have a length of several millimetres, and are easily accessible for manipulations and imaging, which makes them attractive for basic research and in vitro nephrotoxicology. The experimental system described also allows for in vitro studies on how primary human kidney cells regenerate renal structures after organ disruption. The finding that human kidney cells organize tissue‐like structures independently from the substrate architecture has important consequences for kidney tissue engineering, and it will be important, for instance, to inhibit the process of tubulogenesis on 2D surfaces in bioartificial kidneys.  相似文献   
62.
Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.  相似文献   
63.
Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.  相似文献   
64.
65.
66.
67.
BACKGROUND: Diffuse anaplastic Wilms tumor (DAWT) is a rare, high-risk subtype that is often missed on diagnostic needle biopsy. Somatic mutations in TP53 are associated with the development of anaplasia and with poorer survival, particularly in advanced-stage disease. Early identification of DAWT harboring TP53 abnormalities could improve risk stratification of initial therapy and monitoring for recurrence. METHODS: Droplet digital polymerase chain reaction (ddPCR) was used to evaluate 21 samples from 4 patients with DAWT. For each patient, we assessed TP53 status in frozen tumor, matched germline DNA, and circulating tumor DNA (ctDNA) from plasma, serum, and urine collected throughout treatment. RESULTS: Mutant TP53 was detectable in ctDNA from plasma and serum in all patients. We did not detect variant TP53 in the same volume (200 μl) of urine. One patient displayed heterogeneity of TP53 in the tumor despite both histological sections displaying anaplasia. Concentration of ctDNA from plasma/serum taken prenephrectomy varied significantly between patients, ranging from 0.44 (0.05-0.90) to 125.25 (109.75-140.25) copies/μl. We observed variation in ctDNA throughout treatment, and in all but one patient, ctDNA levels fell significantly following nephrectomy. CONCLUSION: We demonstrate for the first time that ddPCR is an effective method for detection of mutant TP53 in ctDNA from children with DAWT even when there is intratumoral somatic heterogeneity. This should be further explored in a larger cohort of patients, as early detection of circulating variant TP53 may have significant clinical impact on future risk stratification and surveillance.  相似文献   
68.
We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD) and biceps femoris (BF)) and in the cardiac muscle (ventriculus sinister cordis (VSC)) of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM) or 50% (LOW) of their energy and protein requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty), twin offspring received a high-carbohydrate-high-fat (HCHF) or a moderate-conventional (CONV) diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet and slaughtered at 2-years of age (young adults). The only long-term consequences of fetal undernutrition observed in adult offspring were lower expressions of the insulin responsive glucose transporter 4 (GLUT4) protein and peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC1α) mRNA in BF, but increased PGC1α expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins) related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes, these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1½ years. In conclusion, early postnatal, but not late gestation, nutrition had long-term consequences for a number of determinants of insulin action and metabolism in LD. Tissues other than muscle may account for reduced whole body insulin sensitivity in adult LOW sheep.  相似文献   
69.
G12 rotaviruses were first detected in diarrheic children in the Philippines in 1987, but no further cases were reported until 1998. However, G12 rotaviruses have been detected all over the world in recent years. Here, we report the worldwide variations of G12 rotaviruses to investigate the evolutionary mechanisms by which they managed to spread globally in a short period of time. We sequenced the complete genomes (11 segments) of nine G12 rotaviruses isolated in Bangladesh, Belgium, Thailand, and the Philippines and compared them with the genomes of other rotavirus strains. Our genetic analyses revealed that after introduction of the VP7 gene of the rare G12 genotype into more common local strains through reassortment, a vast genetic diversity was generated and several new variants with distinct gene constellations emerged. These reassortment events most likely took place in Southeast Asian countries and spread to other parts of the world. The acquirement of gene segments from human-adapted rotaviruses might allow G12 to better propagate in humans and hence to develop into an important emerging human pathogen.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号