首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   18篇
  国内免费   2篇
  2023年   2篇
  2022年   3篇
  2021年   19篇
  2020年   6篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   23篇
  2015年   38篇
  2014年   33篇
  2013年   53篇
  2012年   49篇
  2011年   48篇
  2010年   24篇
  2009年   14篇
  2008年   28篇
  2007年   19篇
  2006年   18篇
  2005年   14篇
  2004年   18篇
  2003年   9篇
  2002年   13篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1978年   1篇
  1975年   2篇
排序方式: 共有486条查询结果,搜索用时 31 毫秒
91.
Ochroconis humicola, a fish pathogen, is rarely reported to cause disease in human. We report its first isolation from nasal tissue of a human immunodeficiency virus-positive young female patient. Histopathologically, the nasal mass was diagnosed as esthesioneuroblastoma. She presented with right-sided nasal obstruction and bleeding for two and half months. Computed tomography scan showed the nasal mass filling the whole right nasal cavity, maxillary, ethmoid and sphenoid sinuses. The direct microscopy of the nasal tissue and mucin demonstrated the presence of septate hyphae. On culture, O. humicola was isolated from the same tissue and the fungus was identified by morphologic, physiologic and molecular data including sequencing of ITS and 28S rDNA regions. No antifungal was prescribed, and the whole mass was resected out by endoscopic surgery. The patient was treated further by radical radiotherapy. After 1 year of follow-up, patient is stable with no recurrence of tumour. The role of this fungus was not clear, as it may be bystander or producing allergic fungal rhinosinusitis.  相似文献   
92.
Ephedra foliata Boiss. & Kotschy ex Boiss., (family – Ephedraceae), is an ecologically and economically important threatened Gymnosperm of the Indian Thar Desert. A method for micropropagation of E. foliata using nodal explant of mature female plant has been developed. Maximum bud-break (90 %) of the explant was obtained on MS medium supplemented with 1.5 mg l−1 of benzyl adenine (BA) + additives. Explant produces 5.3 ± 0.40 shoots from single node with 3.25 ± 0.29 cm length. The multiplication of shoots in culture was affected by salt composition of media, types and concentrations of plant growth regulators (PGR’s) and their interactions, time of transfer of the cultures. Maximum number of shoots (26.3 ± 0.82 per culture vessel) were regenerated on MS medium modified by reducing the concentration of nitrates to half supplemented with 200 mg l−1 ammonium sulphate {(NH4) 2SO4} (MMS3) + BA (0.25 mg l−1), Kinetin (Kin; 0.25 mg l−1), Indole-3-acetic acid (IAA; 0.1 mg l−1) and additives. The in vitro produced shoots rooted under ex vitro on soilrite moistened with one-fourth strength of MS macro salts in screw cap bottles by treating the shoot base (s) with 500 mg l−1 of Indole-3-butyric acid (IBA) for 5 min. The micropropagated plants were hardened in the green house. The described protocol can be applicable for (i) large scale plant production (ii) establishment of plants in natural habitat and (iii) germplasm conservation of this endemic Gymnosperm of arid regions.  相似文献   
93.
Breast cancer is one of the most frequently diagnosed cancers and major cause of death in women in the world. Emerging evidence underscores the value of dietary and non-dietary phytochemicals, including triterpenoids, in the prevention and treatment of breast cancer. Oleanolic acid, an oleanane-type pentacyclic triterpenoid, is present in a large number of dietary and medicinal plants. Oleanolic acid and its derivatives exhibit several promising pharmacological activities, including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, antipruritic, spasmolytic, antiallergic, antimicrobial and antiviral effects. Numerous studies indicate that oleanolic acid and other oleanane triterpenoids modulate multiple intracellular signaling pathways and exert chemopreventive and antitumor activities in various in vitro and in vivo model systems. A series of novel synthetic oleanane triterpenoids have been prepared by chemical modifications of oleanolic acid and some of these compounds are considered to be the most potent anti-inflammatory and anticarcinogenic triterpenoids. Accumulating studies provide extensive evidence that synthetic oleanane derivatives inhibit proliferation and induce apoptosis of various cancer cells in vitro and demonstrate cancer preventive or antitumor efficacy in animal models of blood, breast, colon, connective tissue, liver, lung, pancreas, prostate and skin cancer. This review critically examines the potential role of oleanolic acid, oleanane triterpenoids and related synthetic compounds in the chemoprevention and treatment of mammary neoplasia. Both in vitro and in vivo studies on these agents and related molecular mechanisms are presented. Several challenges and future directions of research to translate already available impressive preclinical knowledge to clinical practice of breast cancer prevention and therapy are also presented.  相似文献   
94.
Activation of bitter taste receptors (T2Rs) in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways.  相似文献   
95.
96.
Mycobacterium leprae, the causal agent of leprosy is non-cultivable in vitro. Thus, the assessment of antibiotic activity against Mycobacterium leprae depends primarily upon the time-consuming mouse footpad system. The GyrA protein of Mycobacterium leprae is the target of the antimycobacterial drug, Ofloxacin. In recent times, the GyrA mutation (A91V) has been found to be resistant to Ofloxacin. This phenomenon has necessitated the development of new, long-acting antimycobacterial compounds. The underlying mechanism of drug resistance is not completely known. Currently, experimentally crystallized GyrA–DNA–OFLX models are not available for highlighting the binding and mechanism of Ofloxacin resistance. Hence, we employed computational approaches to characterize the Ofloxacin interaction with both the native and mutant forms of GyrA complexed with DNA. Binding energy measurements obtained from molecular docking studies highlights hydrogen bond-mediated efficient binding of Ofloxacin to Asp47 in the native GyrA-DNA complex in comparison with that of the mutant GyrA-DNA complex. Further, molecular dynamics studies highlighted the stable binding of Ofloxacin with native GyrA-DNA complex than with the mutant GyrA-DNA complex. This mechanism provided a plausible reason for the reported, reduced effect of Ofloxacin to control leprosy in individuals with the A91V mutation. Our report is the first of its kind wherein the basis for the Ofloxacin drug resistance mechanism has been explored with the help of ternary Mycobacterium leprae complex, GyrA–DNA–OFLX. These structural insights will provide useful information for designing new drugs to target the Ofloxacin-resistant DNA gyrase.  相似文献   
97.
In order to design proteins with improved properties i.e. thermostability, catalytic efficiency and to understand the mechanisms underlying, a thermostable variant of Bacillus lipase was generated by site-directed mutagenesis with enhanced thermal (?Tm = + 12 °C) and chemical (?Cm denaturation for Gdmcl = + 1.75 M) stability as compared to WT. Arg153-His variant showed 72-fold increase in thermostability (t 1/2 = 6 h) at 60 °C as compared to WT (t 1/2 = 5 min). Increase in thermostability might be contributed by the formation of additional hydrogen bonds between His153/AO-Arg106/ANH2 as well as His153-Arg106/ANE. The variant demonstrated broad substrate specificity. A maximum conversion of 59 and 62% was obtained for methyl oleate and methyl butyrate, respectively, using immobilized variant lipase, whereas immobilized WT enzyme synthesizes 35% methyl oleate. WT enzyme was unable to synthesize methyl butyrate as it showed negligible activity with pNP-butyrate.  相似文献   
98.
Development of new class of anti-malarial drugs is an essential requirement for the elimination of malaria. Bioactive components present in medicinal plants and their chemically modified derivatives could be a way forward towards the discovery of effective anti-malarial drugs. Herein, we describe a new class of compounds, 1,3-benzoxazine derivatives of pharmacologically active phytophenols eugenol (compound 3) and isoeugenol (compound 4) synthesised on the principles of green chemistry, as anti-malarials. Compound 4, showed highest anti-malarial activity with no cytotoxicity towards mammalian cells. Compound 4 induced alterations in the intracellular Na+ levels and mitochondrial depolarisation in intraerythrocytic Plasmodium falciparum leading to cell death. Knowing P-type cation ATPase PfATP4 is a regulator for sodium homeostasis, binding of compound 3, compound 4 and eugenol to PfATP4 was analysed by molecular docking studies. Compounds showed binding to the catalytic pocket of PfATP4, however compound 4 showed stronger binding due to the presence of propylene functionality, which corroborates its higher anti-malarial activity. Furthermore, anti-malarial half maximal effective concentration of compound 4 was reduced to 490?nM from 17.54?µM with nanomaterial graphene oxide. Altogether, this study presents anti-plasmodial potential of benzoxazine derivatives of phytophenols and establishes disruption of parasite sodium homeostasis as their mechanism of action.  相似文献   
99.
Tea (Camellia sinensis) plantations are exposed to biotic and abiotic stresses. Among the biotic factors, blister blight (BB), caused by Exobasidium vexans, affects the quality and quantity of the product and demands high fungicide application. A long term solution for disease resistance would require the knowledge of the basic molecular and biochemical changes occurring in plant as an attempt to resist the pathogen and limit the spread of the disease which can further help in developing resistant cultivars using biotechnological tools. Thus, gene expression studies using the cDNA based suppressive subtractive hybridization library, characterization of genes for pathogenesis related (PR) proteins [chitinase (CsCHIT), glucanase (CsGLUC), phenylalanine ammonia lyase (CsPAL)] and genes in flavonoid pathway were accessed in the BB resistant and susceptible cultivars, SA6 and TES34, respectively. Further, biochemical analysis of PR and antioxidant enzymes (POX, APX, SOD) involved in BB resistance have been carried out to investigate the potential molecular and biochemical changes. Various stages of pathogen development had varied impact on PR protein, flavonoid pathway and anti-oxidative enzymes and indicates the possible role of reactive oxygen species, lignins, flavonoids, anthocyanins and other synthesized compounds in acting as antimicrobial/antifungal agents in tea cultivars.  相似文献   
100.
Nicotinamide N-methyltransferase (NNMT) has been linked to obesity and diabetes. We have identified a novel nicotinamide (NA) analog, compound 12 that inhibited NNMT enzymatic activity and reduced the formation of 1-methyl-nicotinamide (MNA), the primary metabolite of NA by ~80% at 2?h when dosed in mice orally at 50?mg/kg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号