首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   17篇
  国内免费   2篇
  2023年   1篇
  2022年   8篇
  2021年   17篇
  2020年   6篇
  2019年   7篇
  2018年   12篇
  2017年   9篇
  2016年   21篇
  2015年   37篇
  2014年   28篇
  2013年   46篇
  2012年   42篇
  2011年   42篇
  2010年   20篇
  2009年   12篇
  2008年   27篇
  2007年   15篇
  2006年   16篇
  2005年   13篇
  2004年   16篇
  2003年   8篇
  2002年   10篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有428条查询结果,搜索用时 734 毫秒
321.
Hormonal control of flower induction and inflorescence development in vitro was investigated in Spathiphyllum. The effects of gibberellic acid (GA3) and sucrose on inflorescence development were studied in plantlets regenerated in tissue culture. GA3 was mandatory for the shift from the vegetative to the reproductive stage. The effect of sucrose concentration on inflorescence bud development was studied in plantlets cultured in MS medium supplemented with 10 mg l−1 GA3. Sucrose concentration at 3 or 6% induced inflorescence development in, respectively, 83–85% of the plantlets. The effect of GA3 and sucrose on inflorescence differentiation and development were also recorded in liquid culture using air-lift bioreactor. The best response was found in the same medium which was standardized as an optimum for solid culture, but the results were better than solid culture. In order to study the relationship between glutathione (GSH) and flowering, we also measured the oxidized and reduced GSH content in leaves throughout the culture period on 2 weeks interval. The GSH accumulation was more after 4 weeks until 6 weeks in GA3 treated plantlets. Similarly, glutathione reductase which is involved in the recycling of reduced GSH providing a constant intracellular level of GSH, was also higher in GA3 treated plantlets. The transient increase in GSH contents also correlated with the changes in measured γ-glutamylcysteine synthetase (γ-ECS) activity over the same period. The antioxidant enzyme activity in GA3 treated plantlets also suggests that the plants suffered increased oxidative stress during the period of GA3 treatment which subsequently increases GSH synthesis through activation of γ-ECS and this promotes flowering by increasing endogenous GSH.  相似文献   
322.
The assembly of synthetic oligonucleotides into genes and genomes is an important methodology. Several methodologies for such synthesis have been developed, but they have two drawbacks: (1) the processes are slow and (2) the error frequencies are high (typically 1-3 errors/kb of DNA). Thermal damage is a major contributor to biosynthetic errors. In this paper, we elucidate the advantages of rapid gene synthesis by polymerase chain assembly (PCA) when used in combination with smart error control strategies. We used a high-speed thermocycler (PCRJet) to effectively minimize thermal damage and to perform rapid assembly of synthetic oligonucleotides to construct two different genes: endothelial protein C receptor (EPCR) and endothelial cell thrombin receptor, thrombomodulin (TM). First, the intact EPCR gene (EPCR-1, 612 bp) and a mutant EPCR-2 (576 bp) that lacked 4 N-linked glycosylation sites were constructed from 35 and 33 oligonucleotides, respectively. Next, for direct error comparison, another longer gene, the 1548 bp TM gene was constructed from 87 oligonucleotides by both rapid and conventional PCA. The fidelity and accuracy of the synthetic genes generated in this manner were confirmed by sequencing. The combined steps of PCA and DNA amplification are completed in about 10 and 22 min for EPCR-1, 2 and TM genes, respectively with comparable low errors in the DNA sequence. Furthermore, we subcloned synthetic TM, EPCR-1, EPCR-2 and native EPCR-1 (amplified from cDNA) into a Pichia pastoris expression vector to evaluate the expression ability, and to compare them with the native gene. Here, we illustrate that the synthetic genes, assembled by rapid PCA, successfully directed the expression of functional proteins. And, importantly, the synthetic and the native genes expressed proteins with the same efficiency.  相似文献   
323.
Sulfonylureas (SU) with glucagon-like peptide-1 (GLP-1)-based therapy are an emerging therapeutic combination for type 2 diabetes. Prior human studies have hinted at endothelial effects of GLP-1 and SU. To study the endothelial effects of GLP-1 per se and to evaluate the modulatory effects, if any, of SU agents on GLP-1-induced changes in endothelial function, healthy, nondiabetic, normotensive, nonsmokers, age 18-50 yr with no family history of diabetes, were studied. Subjects were randomized to either placebo (n = 10), 10 mg of glyburide (n = 11), or 4 mg of glimepiride (n = 8) orally. Euglycemic somatostatin pancreatic clamp with replacement basal insulin, glucagon, and growth hormone was performed for 240 min. Forearm blood flow (FBF) was measured by venous occlusion plethysmography with graded brachial artery infusions of acetylcholine (Ach) and nitroprusside (NTP) before and after intravenous infusion of GLP-1. GLP-1 (preinfusion 3.4 +/- 0.2, postinfusion 25.5 +/- 2.8 pM) enhanced (P < 0.03) Ach-mediated vasodilatation (Delta+6.5 +/- 1.1 vs. Delta+9.1 +/- 1.2 ml.100 ml(-1).min(-1), change from baseline FBF) in those on placebo. However, in contrast, glyburide abolished GLP-1-induced Ach-mediated vasodilatation (Delta+11.7 +/- 2.0 vs. Delta+11.7 +/- 2.5 ml.100 ml(-1).min(-1)). On the other hand, glimepiride did not alter the ability of GLP-1 to enhance Ach-mediated vasodilatation (Delta+7.9 +/- 0.5 vs. Delta+10.2 +/- 1.3 ml.100 ml(-1).min(-1), P < 0.04). Neither GLP-1 nor SU altered NTP-induced vasodilatation. These data demonstrate that GLP-1 per se has direct beneficial effects on endothelium-dependent vasodilatation in humans that are differentially modulated by SU.  相似文献   
324.
In this study, we have evaluated neuroprotective effect of an immunosuppressant immunophilin ligand, FK506, in the sciatic nerve injury model in rats. FK506 was injected to the sciatic nerve transected 3-month-old female Wistar rats (2 mg/kg/day starting 1 day prior to sciatic nerve injury up to 7 day post operation). Equal number of sciatic nerve transected animals served as injured untreated controls. The contralateral side served as respective control. L4-L5 region of the spinal cord was removed on day 1, 3, 7, 14, 21, and 28, post operation and then processed for cryo-sectioning and paraffin sectioning. The cryocut sections were used for immunohistochemistry for localizing all microglia (using anti-Iba-1) and MHC-II expressing microglia (with OX-6). The physical dissector method was applied on Nissl stained paraffin sections for absolute motor neuron counting in the L4-L5 region of spinal cord. FK506 treated animals presented 88.7% neuronal survival while the injured alone had 79.12%, which is significantly less than the treated animals. FK506 caused early proliferation of microglia at 1 and 3 days post operation. FK506 also significantly restricted transformation of these cells in to phagocytes. Colocalization of activated microglia by anti-Iba-1 and OX-6 antibodies, confirms that the MHC-II expressing cells in injured spinal cord are none other than microglial cells and MHC-II expressing cells are significantly less in treated as compared to untreated injured animals. We propose that immunosuppression is one of the main mechanisms by which FK506 protects the central neurons following peripheral injury.  相似文献   
325.
Nap1 is a histone chaperone involved in the nuclear import of H2A–H2B and nucleosome assembly. Here, we report the crystal structure of Nap1 bound to H2A–H2B together with in vitro and in vivo functional studies that elucidate the principles underlying Nap1‐mediated H2A–H2B chaperoning and nucleosome assembly. A Nap1 dimer provides an acidic binding surface and asymmetrically engages a single H2A–H2B heterodimer. Oligomerization of the Nap1–H2A–H2B complex results in burial of surfaces required for deposition of H2A–H2B into nucleosomes. Chromatin immunoprecipitation‐exonuclease (ChIP‐exo) analysis shows that Nap1 is required for H2A–H2B deposition across the genome. Mutants that interfere with Nap1 oligomerization exhibit severe nucleosome assembly defects showing that oligomerization is essential for the chaperone function. These findings establish the molecular basis for Nap1‐mediated H2A–H2B deposition and nucleosome assembly.  相似文献   
326.
327.
328.
Endospore-forming bacteria make up an important and numerically significant component of microbial communities in a range of settings including soils, industry, hospitals and marine sediments extending into the deep subsurface. Bacterial endospores are non-reproductive structures that protect DNA and improve cell survival during periods unfavourable for bacterial growth. An important determinant of endospores withstanding extreme environmental conditions is 2,6-pyridine dicarboxylic acid (i.e. dipicolinic acid, or DPA), which contributes heat resistance. This study presents an improved HPLC-fluorescence method for DPA quantification using a single 10-min run with pre-column Tb3+ chelation. Relative to existing DPA quantification methods, specific improvements pertain to sensitivity, detection limit and range, as well as the development of new free DPA and spore-specific DPA proxies. The method distinguishes DPA from intact and recently germinated spores, enabling responses to germinants in natural samples or experiments to be assessed in a new way. DPA-based endospore quantification depends on accurate spore-specific DPA contents, in particular, thermophilic spores are shown to have a higher DPA content, meaning that marine sediments with plentiful thermophilic spores may require spore number estimates to be revisited. This method has a wide range of potential applications for more accurately quantifying bacterial endospores in diverse environmental samples.  相似文献   
329.
Summary A rapid shoot multiplication protocol was established for an important medicinal plant, Vitex negundo L., belonging to the family Verbenaceae, using Murashige and Skoog medium, achieved by shoot multiplication as well as callus regeneration. Shoot multiplication was induced by different concentrations of 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ), Benzyladenine and 6-furfuryl amino purine separately along with 10% (v/v) coconut water. Green organogenetic callus was obtained by the combined effect of 0.5–2.15 μM TDZ and 1.7 μM indole-3-acetic acid (IAA) along with 1% polyvinylpyrrolidone (PVP), and produced the maximum number of shoots when subcultured onto medium containing 2.7 μM TDZ alone. Elongation of in vitro shoots was observed in MS medium containing 2.4 μM gibberellic acid and rooting was induced by the combined effect of 1.71 μM IAA and 1.62 μM α-naphthalene acetic acid.  相似文献   
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号