首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   745篇
  免费   90篇
  2021年   7篇
  2020年   7篇
  2019年   12篇
  2018年   13篇
  2017年   10篇
  2016年   22篇
  2015年   23篇
  2014年   29篇
  2013年   33篇
  2012年   54篇
  2011年   32篇
  2010年   31篇
  2009年   27篇
  2008年   41篇
  2007年   30篇
  2006年   37篇
  2005年   20篇
  2004年   40篇
  2003年   25篇
  2002年   21篇
  2001年   38篇
  2000年   22篇
  1999年   14篇
  1998年   11篇
  1997年   7篇
  1994年   4篇
  1993年   8篇
  1992年   11篇
  1991年   12篇
  1990年   18篇
  1989年   14篇
  1988年   16篇
  1987年   14篇
  1986年   13篇
  1985年   10篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   4篇
  1979年   9篇
  1978年   4篇
  1977年   9篇
  1976年   6篇
  1974年   6篇
  1970年   6篇
  1969年   4篇
  1968年   4篇
  1967年   5篇
  1966年   4篇
排序方式: 共有835条查询结果,搜索用时 31 毫秒
91.
The oxygenase domain of the inducible nitric oxide synthase, Δ65 iNOSox is a dimer that binds heme, L-Arginine (L-Arg), and tetrahydrobiopterin (H4B) and is the site for NO synthesis. The role of H4B in iNOS structure-function is complex and its exact structural role is presently unknown. The present paper provides a simple mechanistic account of interaction of the cofactor tetrahydrobiopterin (H4B) with the bacterially expressed Δ65 iNOSox protein. Transverse urea gradient gel electrophoresis studies indicated the presence of different conformers in the cofactor-incubated and cofactor-free Δ65 iNOSox protein. Dynamic Light Scattering (DLS) studies of cofactor-incubated and cofactor-free Δ65 iNOSox protein also showed two distinct populations of two different diameter ranges. Cofactor tetrahydrobiopterin (H4B) shifted one population, with higher diameter, to the lower diameter ranges indicating conformational changes. The additional role played by the cofactor is to elevate the heme retaining capacity even in presence of denaturing stress. Together, these findings confirm that the H4B is essential in modulating the iNOS heme environment and the protein environment in the dimeric iNOS oxygenase domain. (Mol Cell Boichem xxx: 1–10, 2005) Supported by Calcutta University Research Grants.  相似文献   
92.
The effect of denaturants such as urea, sodium dodecylsulphate (SDS), guanidinium hydrochloride (Gu.HCl) on the structure of enzyme 3-hydroxybenzoate-6-hydroxylase was studied using intrinsic fluorescence and far and near-UV-CD spectroscopic techniques. Also, activity profiles of the enzyme, as a function of increasing concentrations of denaturants were studied. The far-UV CD spectrum of the enzyme did not show appreciable alterations in the presence of urea, SDS or Gu.HCl, thereby suggesting that the protein does not undergo gross conformational changes in its alpha-helical secondary structure. The treatment of enzyme with 2 M urea resulted in almost complete loss of catalytic activity, accompanied by the reduction of emission fluorescence of enzyme. Similarly, treatment with 0.01% SDS also caused almost complete loss of activity and quenching of enzyme fluorescence as well as a red shift in the emission peak. In addition, reduction in the intensity of near-UV-CD spectrum, especially at 280 nm was observed. About 70% of the activity was lost by treatment with 20 mM Gu.HCl, accompanied by quenching of intrinsic fluorescence of the enzyme. The change in intrinsic fluorescence of the enzyme in the presence of 5 mM-100 mM Gu.HCI could be correlated to progressive loss of catalytic activity. Thus, intrinsic fluorescence (due to tryptophan residues) could be used as an effective probe to provide an insight into the relation between the activity and subtle conformational changes of the enzyme. The results suggested that denaturants caused very slight conformational changes in the enzyme that perturbed the microenvironment of aromatic amino acid residues such as tryptophan accompanied by reduction or loss of catalytic activity.  相似文献   
93.
The folding behavior of cytochrome C (Cyt-C) conjugated with CdS nanorods (CdSnr) is amenable to monitoring by bright field microscopy, the porosity and percolating behavior of such protein conjugated nanoclusters depending on the folding history prior to the conjugation. The method has been used to predict the thermal melting behavior as well as guanidine hydrochloride induced unfolding of Cyt-C. Dynamic light scattering studies indicate that the size distribution of the nanoforms widens in presence of the protein. Furthermore, there is emergence of clusters with higher conductivity and altered zeta potential. Increase of second virial coefficient of CdS nanoforms in the presence of Cyt-C (obtained from static light scattering experiments) implies presence of protein coat over the hydrophobic nanosurface. The results are supported by morphological changes observed through scanning electron microscopy (SEM). Accordingly, the X-ray diffraction pattern shows a change of crystallographic orientations of CdSnr in presence of Cyt-C.  相似文献   
94.
Emergence of the bi-subunit topoisomerase I in the kinetoplastid family (Trypanosoma and Leishmania) has brought a new twist in topoisomerase research related to evolution, functional conservation and preferential sensitivities to the specific inhibitors of type IB topoisomerase family. In the present study, we describe that naturally occurring flavones baicalein, luteolin and quercetin are potent inhibitors of the recombinant Leishmania donovani topoisomerase I. These compounds bind to the free enzyme and also intercalate into the DNA at a very high concentration (300 µM) without binding to the minor grove. Here, we show that inhibition of topoisomerase I by these flavones is due to stabilization of topoisomerase I–DNA cleavage complexes, which subsequently inhibit the religation step. Their ability to stabilize the covalent topoisomerase I–DNA complex in vitro and in living cells is similar to that of the known topoisomerase I inhibitor camptothecin (CPT). However, in contrast to CPT, baicalein and luteolin failed to inhibit the religation step when the drugs were added to pre-formed enzyme substrate binary complex. This differential mechanism to induce the stabilization of cleavable complex with topoisomerase I and DNA by these selected flavones and CPT led us to investigate the effect of baicalein and luteolin on CPT-resistant mutant enzyme LdTOP1Δ39LS lacking 1–39 amino acids of the large subunit [B. B. Das, N. Sen, S. B. Dasgupta, A. Ganguly and H. K. Majumder (2005) J. Biol. Chem. 280, 16335–16344]. Baicalein and luteolin stabilize duplex oligonucleotide cleavage with LdTOP1Δ39LS. This observation was further supported by the stabilization of in vivo cleavable complex by baicalein and luteolin with highly CPT-resistant L.donovani strain. Taken together, our data suggest that the interacting amino acid residues of topoisomerase I may be partially overlapping or different for flavones and CPT. This study illuminates new properties of the flavones and provide additional insights into the ligand binding properties of L.donovani topoisomerase I.  相似文献   
95.
A small inhibitor RNA (IRNA) isolated from yeast has previously been shown to efficiently block poliovirus and hepatitis C virus IRES-mediated translation by sequestering mammalian RNA-binding (transacting) factors that play important roles in cap-independent translation. Here we have investigated the IRNA-binding proteins that might be involved in cap-independent translation in the yeast Saccharomyces cerevisiae. We have identified Zuotin, a DnaJ chaperone protein similar to mammalian HSP-40 chaperone, which interacts strongly with IRNA. Using ZUO1-deleted S. cerevisiae, we demonstrate a preferential requirement of Zuo1p for cap-independent translation mediated by the 5' untranslated region of the yeast TFIID mRNA. Further studies using zuo1delta S. cerevisiae complemented with various Zuo1p mutants indicate that the DnaJ domain of Zuo1p, known to influence its interaction with HSP-70, significantly affects cap-independent translation. These results demonstrate for the first time a role for an established chaperone protein in cap-independent translation of a cellular mRNA.  相似文献   
96.
Cibacron blue is a potent inhibitor of 3-HBA-6-hydroxylase at a concentration < 1 microM. Kinetic analyses revealed that at a concentration below 0.5 microM the dye behaves as an uncompetitive inhibitor with respect to 3-HBA and competes with NADH for the same site on the enzyme. The alteration of the near-UV CD spectrum and quenching of the emission fluorescence of the enzyme by cibacron blue indicates a significant alteration in the environment of aromatic amino acid residues due to a stacking interaction and subtle conformatiodnal changes in the enzyme. The concentration-dependent quenching of the intrinsic fluorescence of the enzyme by cibacron blue was employed to determine the binding parameters such as association constant (Ka) and stoichiometry (r) for the enzyme-dye complex.  相似文献   
97.
Several silicone oils have been assessed and compared as an internal source of oxygen in connection to their use as binders for carbon-paste glucose biosensors. All four poly(dimethylsiloxane) (PDMS) oils tested a dramatic increase in the oxygen capacity of carbon-paste enzyme electrodes to allow convenient biosensing under severe oxygen-deficit conditions. The resulting oxygen independence is better than that exerted by perfluorocarbon binders or that displayed by mediator-based bioelectrodes. The resistance to oxygen effects is indicated from the identical response (observed in the presence and absence of oxygen) up to 2 x 10(-2) M glucose and the slight (12%) sensitivity loss at 4 x 10(-2) M. The influence of the viscosity of the PDMS binder upon the internal oxygen supply is examined. The PDMS carbon-paste enzyme electrode displays a stable glucose response over prolonged (15 h) operation in an oxygen-free solution. On-line continuous testing indicates favorable dynamic properties with no carry-over effects over the physiological and pathophysiological range (3-12 mM glucose).  相似文献   
98.

Background

α-Eleostearic acid and punicic acid, two typical conjugated linolenic acid (CLnA) isomers present in bitter gourd and snake gourd oil respectively, exhibit contrasting cis-trans configuration which made them biologically important.

Methods

Rats were divided into six groups. Group 1 was control and group 2 was treated control. Rats in the groups 3 and 4 were treated with mixture of α-eleostearic acid and punicic acid (1:1) (0.5% and 1.0% respectively) while rats in the groups 5 and 6 were treated with 0.5% of α-eleostearic acid and 0.5% of punicic acid respectively along with sodium arsenite by oral gavage once per day.

Results

Results showed that increase in nitric oxide synthase (NOS) activity, inflammatory markers expression, platelet aggregation, lipid peroxidation, protein oxidation, DNA damage and altered expression of liver X receptor-α (LXR-α) after arsenite treatment were restored with the supplementation of oils containing CLnA isomers. Altered activities of different antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and ferric reducing ability of plasma (FRAP) also restored after oil supplementation. Altered morphology and fluidity of erythrocyte membrane studied by atomic force and scanning electron microscopy, after stress induction were significantly improved due to amelioration in cholesterol/phospholipid ratio and fatty acid profile of membrane. Oils treatment also improved morphology of liver and fatty acid composition of hepatic lipid.

Conclusions

Overall two isomers showed synergistic antioxidant and anti-inflammatory effect against induced perturbations and membrane disintegrity.

General significance

Synergistic antioxidant and anti-inflammatory role of these CLnA isomers were established by this study.  相似文献   
99.
Mitochondrial DNA (mtDNA) mutations were reported in different cancers. However, the nature and role of mtDNA mutation in never‐smoker lung cancer patients including patients with epidermal growth factor receptor (EGFR) and KRAS gene mutation are unknown. In the present study, we sequenced entire mitochondrial genome (16.5 kb) in matched normal and tumors obtained from 30 never‐smoker and 30 current‐smoker lung cancer patients, and determined the mtDNA content. All the patients' samples were sequenced for KRAS (exon 2) and EGFR (exon 19 and 21) gene mutation. The impact of forced overexpression of a respiratory complex‐I gene mutation was evaluated in a lung cancer cell line. We observed significantly higher (P = 0.006) mtDNA mutation in the never‐smokers compared to the current‐smoker lung cancer patients. MtDNA mutation was significantly higher (P = 0.026) in the never‐smoker Asian compared to the current‐smoker Caucasian patients' population. MtDNA mutation was significantly (P = 0.007) associated with EGFR gene mutation in the never‐smoker patients. We also observed a significant increase (P = 0.037) in mtDNA content among the never‐smoker lung cancer patients. The majority of the coding mtDNA mutations targeted respiratory complex‐I and forced overexpression of one of these mutations resulted in increased in vitro proliferation, invasion, and superoxide production in lung cancer cells. We observed a higher prevalence and new relationship between mtDNA alterations among never‐smoker lung cancer patients and EGFR gene mutation. Moreover, a representative mutation produced strong growth effects after forced overexpression in lung cancer cells. Signature mtDNA mutations provide a basis to develop novel biomarkers and therapeutic strategies for never‐smoker lung cancer patients. J. Cell. Physiol. 227: 2451–2460, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
100.
Dasgupta I  Gao X  Fox GE 《Biopolymers》2012,97(3):155-164
The antisense DNA sequence of mature mouse micro RNA, miR341, includes three repeats of the tetranucleotide (GACC). The -GAC- repeat is known to form a parallel duplex, in acidic environments. The thermal melting profile of miR341 DNA, at pH 4, 5, and 6 indicates the formation of a very stable structure, which loses its stability when pH is increased. Thus, the addition of a cytosine at the 3' end of the (GAC) motif preserves the molecule's potential to fold into an unusual structure at low pH. The effect of modifying the nucleotide composition of the GACC sequence on the secondary structures formed by oligomers containing seven tandem repeats of the altered motifs was examined here. UV melting profiles were determined, as a function of pH, for 28-mers of the two series (GAXC)(7) and (GACX)(7) (X= A/C/T/G)(.) The sequence (GACC)(7) was found to be extremely sensitive to pH variations, with a stable structure formed at pH 5 (T(m) ≥ 60°C). NMR spectroscopy established that the low pH structure is not B-DNA. (GACA)(7) and (GACT)(7) also formed stable structures at low pH but the addition of guanine at the 3'end, as seen in the (GACG) series resulted in the loss of this property. Introducing a break in the 5'-GAC-3' motif, explored in the (GAXC) series, also inhibits formation of stable structures under acidic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号