首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   733篇
  免费   45篇
  2023年   4篇
  2021年   15篇
  2020年   10篇
  2019年   8篇
  2018年   12篇
  2017年   8篇
  2016年   11篇
  2015年   20篇
  2014年   28篇
  2013年   53篇
  2012年   54篇
  2011年   43篇
  2010年   20篇
  2009年   19篇
  2008年   34篇
  2007年   43篇
  2006年   37篇
  2005年   28篇
  2004年   31篇
  2003年   21篇
  2002年   18篇
  2001年   20篇
  2000年   17篇
  1999年   10篇
  1998年   6篇
  1997年   4篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1986年   9篇
  1985年   11篇
  1984年   6篇
  1983年   9篇
  1981年   6篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   7篇
  1974年   11篇
  1973年   14篇
  1972年   10篇
  1971年   6篇
  1970年   4篇
  1969年   6篇
  1968年   3篇
排序方式: 共有778条查询结果,搜索用时 31 毫秒
61.
Presence and stability of an unusual phycoerythrin (PE) characteristically similar to R-PE are described in a terrestrial, desiccation-tolerant cyanobacterium, Lyngbya arboricola. Extraction and purification of the PE by using acetone precipitation, gel filtration and ion-exchange chromatography resulted in achieving a purity index (A560/A280) of up to 5.2. SDS-PAGE of the PE showed presence of 18 kDa, 20 kDa and 32 kDa bands corresponding to α, β and γ subunits of R-PE without any other contaminating phycobiliproteins (PBPs). The absorption spectrum of the PE was distinguished by two major peaks at 499 and 559 nm. The maximum fluorescence emission at room temperature was 578 nm. Spectroscopic and electrophoresis characteristics of PE in the dry mats on storage at 25 ± 1°C over silica gel for 2 years remained almost unaffected. Quantitatively, storage stability of the PE was in the order of dry mats > lyophilized > liquid state and the impact of temperature on loss of PE was in the order of 25°C > −20°C > 4°C. The relevance of L. arboricola for production of stable unusual PE is discussed.  相似文献   
62.
A novel cross-linked enzyme aggregates (CLEA) concept called combi-CLEA has been described. It is based upon the fact that CLEA can be made from heterogeneous populations of proteins/enzymes. Porcine pancreatic acetone powder crude extract was used for preparing CLEA in such a way that lipase, -amylase, phospholipase A2 activities were retained upto 100%. The lipase present in the CLEA showed greater thermal stability at 50 °C as compared to free enzyme. For lipase and phospholipase A2, Vmax/Km showed no significant change upon combi-CLEA formation but decreased significantly for -amylase activity from 190 to 114 min−1. The lipase activity and -amylase activity in CLEA were completely retained upto three cycles of use. The scanning electron microscopic (SEM) studies showed that morphology of CLEA changed upon inactivation by reuses.  相似文献   
63.
RAS subfamily proteins regulates cell growth promoting signaling processes by cycling between active (GTP‐bound) and inactive (GDP‐bound) states. Different RAS isoforms, though structurally similar, exhibit functional specificity and are associated with different types of cancers and developmental disorders. Understanding the dynamical differences between the isoforms is crucial for the design of inhibitors that can selectively target a particular malfunctioning isoform. In this study, we provide a comprehensive comparison of the dynamics of all the three RAS isoforms (HRAS, KRAS, and NRAS) using extensive molecular dynamics simulations in both the GDP‐ (total of 3.06 μs) and GTP‐bound (total of 2.4 μs) states. We observed significant differences in the dynamics of the isoforms, which rather interestingly, varied depending on the type of the nucleotide bound and the simulation temperature. Both SwitchI (Residues 25–40) and SwitchII (Residues 59–75) differ significantly in their flexibility in the three isoforms. Furthermore, Principal Component Analysis showed that there are differences in the conformational space sampled by the GTP‐bound RAS isoforms. We also identified a previously unreported pocket, which opens transiently during MD simulations, and can be targeted to regulate nucleotide exchange reaction or possibly interfere with membrane localization. Further, we present the first simulation study showing GDP destabilization in the wild‐type RAS protein. The destabilization of GDP/GTP occurred only in 1/50 simulations, emphasizing the need of guanine nucleotide exchange factors (GEFs) to accelerate such an extremely unfavorable process. This observation along with the other results presented in this article further support our previously hypothesized mechanism of GEF‐assisted nucleotide exchange. Proteins 2015; 83:1091–1106. © 2015 Wiley Periodicals, Inc.  相似文献   
64.
Innervation of the gut is segmentally lost in Hirschsprung disease (HSCR), a consequence of cell-autonomous and non-autonomous defects in enteric neuronal cell differentiation, proliferation, migration, or survival. Rare, high-penetrance coding variants and common, low-penetrance non-coding variants in 13 genes are known to underlie HSCR risk, with the most frequent variants in the ret proto-oncogene (RET). We used a genome-wide association (220 trios) and replication (429 trios) study to reveal a second non-coding variant distal to RET and a non-coding allele on chromosome 7 within the class 3 Semaphorin gene cluster. Analysis in Ret wild-type and Ret-null mice demonstrates specific expression of Sema3a, Sema3c, and Sema3d in the enteric nervous system (ENS). In zebrafish embryos, sema3 knockdowns show reduction of migratory ENS precursors with complete ablation under conjoint ret loss of function. Seven candidate receptors of Sema3 proteins are also expressed within the mouse ENS and their expression is also lost in the ENS of Ret-null embryos. Sequencing of SEMA3A, SEMA3C, and SEMA3D in 254 HSCR-affected subjects followed by in silico protein structure modeling and functional analyses identified five disease-associated alleles with loss-of-function defects in semaphorin dimerization and binding to their cognate neuropilin and plexin receptors. Thus, semaphorin 3C/3D signaling is an evolutionarily conserved regulator of ENS development whose dys-regulation is a cause of enteric aganglionosis.  相似文献   
65.
66.
Benzothiophene derivatives like benzothiophene sulphonamides, biphenyls, or carboxyls have been synthesized and have found wide pharmacological usage. Here we report, bromo-benzothiophene carboxamide derivatives as potent, slow tight binding inhibitors of Plasmodium enoyl-acyl carrier protein (ACP) reductase (PfENR). 3-Bromo-N-(4-fluorobenzyl)-benzo[b]thiophene-2-carboxamide (compound 6) is the most potent inhibitor with an IC50 of 115 nM for purified PfENR. The inhibition constant (Ki) of compound 6 was 18 nM with respect to the cofactor and 91 nM with respect to crotonoyl-CoA. These inhibitors showed competitive kinetics with cofactor and uncompetitive kinetics with the substrate. Thus, these compounds hold promise for the development of potent antimalarials.  相似文献   
67.
Recent studies have shown that erythropoietin, critical for the differentiation and survival of erythrocytes, has cytoprotective effects in a wide variety of tissues, including the kidney and lung. However, erythropoietin has been shown to have a serious side effect-an increase in thrombovascular effects. We investigated whether pyroglutamate helix B-surface peptide (pHBSP), a nonerythropoietic tissue-protective peptide mimicking the 3D structure of erythropoietin, protects against the organ injury/ dysfunction and inflammation in rats subjected to severe hemorrhagic shock (HS). Mean arterial blood pressure was reduced to 35 ± 5 mmHg for 90 min followed by resuscitation with 20 mL/kg Ringer Lactate for 10 min and 50% of the shed blood for 50 min. Rats were euthanized 4 h after the onset of resuscitation. pHBSP was administered 30 min or 60 min into resuscitation. HS resulted in significant organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung). In rats subjected to HS, pHBSP significantly attenuated (i) organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung), (ii) increased the phosphorylation of Akt, glycogen synthase kinase-3β and endothelial nitric oxide synthase, (iii) attenuated the activation of nuclear factor (NF)-κB and (iv) attenuated the increase in p38 and extracellular signal-regulated kinase (ERK)1/2 phosphorylation. pHBSP protects against multiple organ injury/dysfunction and inflammation caused by severe hemorrhagic shock by a mechanism that may involve activation of Akt and endothelial nitric oxide synthase, and inhibition of glycogen synthase kinase-3β and NF-κB.  相似文献   
68.
The β-hydroxyacyl-acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) catalyzes the third and important reaction of the fatty acid elongation cycle. The crystal structure of PfFabZ is available in hexameric (active) and dimeric (inactive) forms. However, PfFabZ has not been crystallized with any bound inhibitors until now. We have designed a new condition to crystallize PfFabZ with its inhibitors bound in the active site, and determined the crystal structures of four of these complexes. This is the first report on any FabZ enzyme with active site inhibitors that interact directly with the catalytic residues. Inhibitor binding not only stabilized the substrate binding loop but also revealed that the substrate binding tunnel has an overall shape of “U”. In the crystal structures, residue Phe169 located in the middle of the tunnel was found to be in two different conformations, open and closed. Thus, Phe169, merely by changing its side chain conformation, appears to be controlling the length of the tunnel to make it suitable for accommodating longer substrates. The volume of the substrate binding tunnel is determined by the sequence as well as by the conformation of the substrate binding loop region and varies between organisms for accommodating fatty acids of different chain lengths. This report on the crystal structures of the complexes of PfFabZ provides the structural basis of the inhibitory mechanism of the enzyme that could be used to improve the potency of inhibitors against an important component of fatty acid synthesis common to many infectious organisms.  相似文献   
69.
70.
Epstein-Barr virus (EBV) genomes persist indefinitely in latently infected human cells, in part due to their ability to stably segregate during cell division. This process is mediated by the viral EBNA1 protein, which tethers the viral episomes to the cellular mitotic chromosomes. We have previously identified a mitotic chromosomal protein, human EBNA1 binding protein 2 (hEBP2), which binds to EBNA1 and enables EBNA1 to partition EBV-based plasmids in Saccharomyces cerevisiae. Using an RNA silencing approach, we show that hEBP2 is essential for the proliferation of human cells and that repression of hEBP2 severely decreases the ability of EBNA1 and EBV-based plasmids to bind mitotic chromosomes. When expressed in yeast, hEBP2 undergoes the same cell cycle-regulated association with the mitotic chromatin as in human cells, and using yeast temperature-sensitive mutant strains, we found that the attachment of hEBP2 to mitotic chromosomes was dependent on the Ipl1 kinase. Both RNA silencing of the Ipl1 orthologue in human cells (Aurora B) and specific inhibition of the Aurora B kinase activity with a small molecule confirmed a role for this kinase in enabling hEBP2 binding to human mitotic chromosomes, suggesting that this kinase can regulate EBV segregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号