首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   14篇
  2013年   5篇
  2012年   9篇
  2011年   9篇
  2010年   8篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   7篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
51.
Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10(-5) M, 10(-4) M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10(-7) M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation.  相似文献   
52.
HIV-1 replication in the presence of antiviral agents results in evolution of drug-resistant variants, motivating the search for additional drug classes. Here we report studies of GSK1264, which was identified as a compound that disrupts the interaction between HIV-1 integrase (IN) and the cellular factor lens epithelium-derived growth factor (LEDGF)/p75. GSK1264 displayed potent antiviral activity and was found to bind at the site occupied by LEDGF/p75 on IN by x-ray crystallography. Assays of HIV replication in the presence of GSK1264 showed only modest inhibition of the early infection steps and little effect on integration targeting, which is guided by the LEDGF/p75·IN interaction. In contrast, inhibition of late replication steps was more potent. Particle production was normal, but particles showed reduced infectivity. GSK1264 promoted aggregation of IN and preformed LEDGF/p75·IN complexes, suggesting a mechanism of inhibition. LEDGF/p75 was not displaced from IN during aggregation, indicating trapping of LEDGF/p75 in aggregates. Aggregation assays with truncated IN variants revealed that a construct with catalytic and C-terminal domains of IN only formed an open polymer associated with efficient drug-induced aggregation. These data suggest that the allosteric inhibitors of IN are promising antiviral agents and provide new information on their mechanism of action.  相似文献   
53.
54.
The quinoline-based allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are promising candidates for clinically useful antiviral agents. Studies using these compounds have highlighted the role of IN in both early and late stages of virus replication. However, dissecting the exact mechanism of action of the quinoline-based ALLINIs has been complicated by the multifunctional nature of these inhibitors because they both inhibit IN binding with its cofactor LEDGF/p75 and promote aberrant IN multimerization with similar potencies in vitro. Here we report design of small molecules that allowed us to probe the role of HIV-1 IN multimerization independently from IN-LEDGF/p75 interactions in infected cells. We altered the rigid quinoline moiety in ALLINIs and designed pyridine-based molecules with a rotatable single bond to allow these compounds to bridge between interacting IN subunits optimally and promote oligomerization. The most potent pyridine-based inhibitor, KF116, potently (EC50 of 0.024 µM) blocked HIV-1 replication by inducing aberrant IN multimerization in virus particles, whereas it was not effective when added to target cells. Furthermore, KF116 inhibited the HIV-1 IN variant with the A128T substitution, which confers resistance to the majority of quinoline-based ALLINIs. A genome-wide HIV-1 integration site analysis demonstrated that addition of KF116 to target or producer cells did not affect LEDGF/p75-dependent HIV-1 integration in host chromosomes, indicating that this compound is not detectably inhibiting IN-LEDGF/p75 binding. These findings delineate the significance of correctly ordered IN structure for HIV-1 particle morphogenesis and demonstrate feasibility of exploiting IN multimerization as a therapeutic target. Furthermore, pyridine-based compounds present a novel class of multimerization selective IN inhibitors as investigational probes for HIV-1 molecular biology.  相似文献   
55.
Target-site selection by retroviral integrase (IN) proteins profoundly affects viral pathogenesis. We describe the solution nuclear magnetic resonance structure of the Moloney murine leukemia virus IN (M-MLV) C-terminal domain (CTD) and a structural homology model of the catalytic core domain (CCD). In solution, the isolated MLV IN CTD adopts an SH3 domain fold flanked by a C-terminal unstructured tail. We generated a concordant MLV IN CCD structural model using SWISS-MODEL, MMM-tree and I-TASSER. Using the X-ray crystal structure of the prototype foamy virus IN target capture complex together with our MLV domain structures, residues within the CCD α2 helical region and the CTD β1-β2 loop were predicted to bind target DNA. The role of these residues was analyzed in vivo through point mutants and motif interchanges. Viable viruses with substitutions at the IN CCD α2 helical region and the CTD β1-β2 loop were tested for effects on integration target site selection. Next-generation sequencing and analysis of integration target sequences indicate that the CCD α2 helical region, in particular P187, interacts with the sequences distal to the scissile bonds whereas the CTD β1-β2 loop binds to residues proximal to it. These findings validate our structural model and disclose IN-DNA interactions relevant to target site selection.  相似文献   
56.
Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets.  相似文献   
57.
We report the novel use of the AngioVac device in a percutaneous hybrid approach to remove a large right atrial clot as an effective and potentially lifesaving alternative to a very high-risk redo-sternotomy in a Jehovah's Witness patient.  相似文献   
58.

Background

The cellular activity of many factors and pathways is required to execute the complex replication cycle of the human immunodeficiency virus type 1 (HIV-1). To reveal these cellular components, several extensive RNAi screens have been performed, listing numerous 'HIV-dependency factors'. However, only a small overlap between these lists exists, calling for further evaluation of the relevance of specific factors to HIV-1 replication and for the identification of additional cellular candidates. TBC1D20, the GTPase-activating protein (GAP) of Rab1, regulates endoplasmic reticulum (ER) to Golgi trafficking, was not identified in any of these screens, and its involvement in HIV-1 replication cycle is tested here.

Findings

Excessive TBC1D20 activity perturbs the early trafficking of HIV-1 envelope protein through the secretory pathway. Overexpression of TBC1D20 hampered envelope processing and reduced its association with detergent-resistant membranes, entailing a reduction in infectivity of HIV-1 virion like particles (VLPs).

Conclusions

These findings add TBC1D20 to the network of host factors regulating HIV replication cycle.  相似文献   
59.

Background

Allergy documentation is frequently inconsistent and incomplete. The impact of this variability on subsequent treatment is not well described.

Objective

To determine how allergy documentation affects subsequent antibiotic choice.

Design

Retrospective, cohort study.

Participants

232,616 adult patients seen by 199 primary care providers (PCPs) between January 1, 2009 and January 1, 2014 at an academic medical system.

Main Measures

Inter-physician variation in beta-lactam allergy documentation; antibiotic treatment following beta-lactam allergy documentation.

Key Results

15.6% of patients had a reported beta-lactam allergy. Of those patients, 39.8% had a specific allergen identified and 22.7% had allergic reaction characteristics documented. Variation between PCPs was greater than would be expected by chance (all p<0.001) in the percentage of their patients with a documented beta-lactam allergy (7.9% to 24.8%), identification of a specific allergen (e.g. amoxicillin as opposed to “penicillins”) (24.0% to 58.2%) and documentation of the reaction characteristics (5.4% to 51.9%). After beta-lactam allergy documentation, patients were less likely to receive penicillins (Relative Risk [RR] 0.16 [95% Confidence Interval: 0.15–0.17]) and cephalosporins (RR 0.28 [95% CI 0.27–0.30]) and more likely to receive fluoroquinolones (RR 1.5 [95% CI 1.5–1.6]), clindamycin (RR 3.8 [95% CI 3.6–4.0]) and vancomycin (RR 5.0 [95% CI 4.3–5.8]). Among patients with beta-lactam allergy, rechallenge was more likely when a specific allergen was identified (RR 1.6 [95% CI 1.5–1.8]) and when reaction characteristics were documented (RR 2.0 [95% CI 1.8–2.2]).

Conclusions

Provider documentation of beta-lactam allergy is highly variable, and details of the allergy are infrequently documented. Classification of a patient as beta-lactam allergic and incomplete documentation regarding the details of the allergy lead to beta-lactam avoidance and use of other antimicrobial agents, behaviors that may adversely impact care quality and cost.  相似文献   
60.
The objective of our study was to determine the role of ibuprofen in protecting neutropenic rats from cardiopulmonary injury due to endotoxemia. We hypothesized that ibuprofen would offer pulmonary protection by altering cytokine production. Neutropenic rats received E. coli lipopolysaccharide (LPS) alone or ibuprofen and LPS. After 4 h, arterial blood gases, heart rate and blood pressure were measured. Blood and bronchoalveolar lavage fluid (BALF) were collected for TNF- alpha and MIP-2 concentrations. Lung tissue for iNOS mRNA and myeloperoxidase were obtained. The ibuprofen group had decreased heart rate and better oxygenation. Ibuprofen suppressed TNF- alpha and MIP-2 production in blood and MIP-2 concentrations in BALF. Lung mRNA for iNOS was higher in the ibuprofen group. Neutrophil infiltration in the lung was similar in both groups. Ibuprofen attenuated cardiopulmonary dysfunction by decreasing the early cytokine response. The balance of vasodilator to vasoconstrictor production in the lung may favor vasodilation as shown by increased iNOS mRNA and suppression of thromboxane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号