首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   12篇
  2023年   3篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   12篇
  2015年   21篇
  2014年   22篇
  2013年   31篇
  2012年   39篇
  2011年   29篇
  2010年   16篇
  2009年   11篇
  2008年   24篇
  2007年   15篇
  2006年   14篇
  2005年   19篇
  2004年   13篇
  2003年   6篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   3篇
排序方式: 共有378条查询结果,搜索用时 792 毫秒
1.
2.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
3.
Summary Flooded soils, which accumulate gaseous products of anaerobic fermentation, are often associated with poor rice plant growth. In the present experiment the effects of CO2, CH4, N2, and air on rice seedling growth and nutrition were evaluated. Nutrient culture techniques were used to avoid secondary soil effects normally experienced.Carbon dioxide gas in the root zone of rice reduced seedling growth significantly, whereas CH4 and N2 had no significant effect. Methane gave no stimulatory benefits, unlike results reported by some earlier workers. Of three major nutrient elements studied, P uptake was affected more than N or K. Phosphorus uptake was significantly reduced in leaves and sheaths by all three gases, but was significantly increased in roots. This suggests an immobilization mechanism affecting P in roots, and since CO2, CH4, and N2 behaved similarly in contrast to air, a lack of oxygen in the root system is suspected as the causal mechanism rather than toxic effects of gases. Effects on N and K uptake were minimal and insignificant.Contribution from the Department of Agronomy and Range Science, University of California, Davis, California 95616.Contribution from the Department of Agronomy and Range Science, University of California, Davis, California 95616.  相似文献   
4.
Two steroidal saponins, floribundasaponins A and B isolated from the yams of Dioscorea floribunda, have been characterized as pennogenin-3-O-β-d-glucopyranoside and pennogenin-3-O-α-l-rhamnopyranosyl(1→4)-β-d-glucopyranoside.  相似文献   
5.
Nutrient dynamics in storage organs is a complex developmental process that requires coordinated interactions of environmental, biochemical, and genetic factors. Although sink organ developmental events have been identified, understanding of translational and post‐translational regulation of reserve synthesis, accumulation, and utilization in legumes is limited. To understand nutrient dynamics during embryonic and cotyledonary photoheterotrophic transition to mature and germinating autotrophic seeds, an integrated proteomics and phosphoproteomics study in six sequential seed developmental stages in chickpea is performed. MS/MS analyses identify 109 unique nutrient‐associated proteins (NAPs) involved in metabolism, storage and biogenesis, and protein turnover. Differences and similarities in 60 nutrient‐associated phosphoproteins (NAPPs) containing 93 phosphosites are compared with NAPs. Data reveal accumulation of carbon–nitrogen metabolic and photosynthetic proteoforms during seed filling. Furthermore, enrichment of storage proteoforms and protease inhibitors is associated with cell expansion and seed maturation. Finally, combined proteoforms network analysis identifies three significant modules, centered around malate dehydrogenase, HSP70, triose phosphate isomerase, and vicilin. Novel clues suggest that ubiquitin–proteasome pathway regulates nutrient reallocation. Second, increased abundance of NAPs/NAPPs related to oxidative and serine/threonine signaling indicates direct interface between redox sensing and signaling during seed development. Taken together, nutrient signals act as metabolic and differentiation determinant governing storage organ reprogramming.  相似文献   
6.
Pathogen‐/microbe‐associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan‐triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho‐histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan‐treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan‐triggered immune‐responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor‐like kinases, and 65 chitosan‐triggered immune‐responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune‐related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan‐responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.  相似文献   
7.
A fragment of 570 bp corresponding to exon 5 and 6 of integrin beta 2 (ITGB2) gene was amplified for screening D128G mutation in one hundred and fifty two buffaloes (Bubalus bubalis) which causes bovine leukocyte adhesion deficiency syndrome (BLAD) in cattle, as well as to ascertain polymorphism. TaqI PCR-RFLP revealed no such mutation thus indicating the absence of bubaline leukocyte adhesion deficiency (BuLAD) allele in animals under study. However, the polymorphism studies using MspI restriction enzyme revealed two genotypic patterns viz. AA pattern (bands of 293, 141, 105, and 31 bp) and BB pattern (bands of 293, 105, 77, 64, and 31 bp). The sequences of A and B alleles were submitted to the GenBank (EU853307 and AY821799).  相似文献   
8.
9.
Abstract

The 5′-O-(4,4′-dimethoxytrityl) and 5′-O-(tert-butyldimethylsilyl) derivatives of 2′-,3′-O-thiocarbonyl-6-azauridine and 2′,3′-O-thiocarbonyl-5-chlorouridine were synthesized from the parent nucleosides by reaction with 4, 4′-dimethoxytrityl chloride and tert-butyldimethylsilyl chloride, respectively, followed by treatment with 1,1′-thiocarbonyldiimidazole. Introduction of a 2′-,3′-double bond into the sugar ring by reaction of the 5′-protected 2′-,3′-O-thionocarbonates with 1, 3-dimethyl-2-phenyl-1, 3, 2-diazaphospholidiine was unsuccessful, but could be accomplished satisfactorily with trimethyl phosphite. Reactions were generally more successful with the 5′-silylated than with the 5′-tritylated nucleosides. Formation of 2′-,3′-O-thiocarbonyl derivatives proceeded in higher yield with 5′-protected 6-azauridines than with the corresponding 5-chlorouridines because of the propensity of the latter to form 2,2′-anhydro derivatives. In the reaction of 5′-O-(tert-butyldimethylsilyl)-2′-,3′-O-thiocarbonyl-6-azauridine with trimethyl phosphite, introduction of the double bond was accompanied by N3-methylation. However this side reaction was not a problem with 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-O-thioarbonyl-5-chlorouridine. Treatment of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-6-azauridine with tetrabutylammonium fluoride followed by hydrogenation afforded 2′-,3′-dideoxy-6-azauridine. Deprotection of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-5-chlorouridine yielded 2′-,3′-didehydro-2′-,3′-dide-oxy-5-chlorouridine.  相似文献   
10.
Prasad  Archana  Patel  Preeti  Pandey  Shatrujeet  Niranjan  Abhishek  Misra  Pratibha 《Protoplasma》2020,257(2):561-572
Protoplasma - Growth and production kinetics of three important glycoalkaloids viz. α-solanine, solanidine, and solasodine in two contrasting prickly and prickleless plants of Solanum viarum...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号