首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   95篇
  753篇
  2023年   4篇
  2022年   6篇
  2021年   23篇
  2020年   8篇
  2019年   15篇
  2018年   15篇
  2017年   14篇
  2016年   14篇
  2015年   26篇
  2014年   34篇
  2013年   26篇
  2012年   51篇
  2011年   72篇
  2010年   37篇
  2009年   28篇
  2008年   41篇
  2007年   34篇
  2006年   36篇
  2005年   31篇
  2004年   32篇
  2003年   25篇
  2002年   27篇
  2001年   5篇
  2000年   14篇
  1999年   8篇
  1997年   9篇
  1996年   4篇
  1994年   4篇
  1992年   4篇
  1990年   13篇
  1989年   3篇
  1988年   9篇
  1987年   3篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
  1979年   8篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   5篇
  1972年   2篇
  1971年   4篇
  1970年   3篇
排序方式: 共有753条查询结果,搜索用时 13 毫秒
111.
Sanger and shotgun sequencing of Clostridium botulinum strain Af84 type Af and its botulinum neurotoxin gene (bont) clusters identified the presence of three bont gene clusters rather than the expected two. The three toxin gene clusters consisted of bont subtypes A2, F4 and F5. The bont/A2 and bont/F4 gene clusters were located within the chromosome (the latter in a novel location), while the bont/F5 toxin gene cluster was located within a large 246 kb plasmid. These findings are the first identification of a C. botulinum strain that contains three botulinum neurotoxin gene clusters.  相似文献   
112.
The human histamine H4 receptor (hH4R), a member of the G-protein coupled receptors (GPCR) family, is an increasingly attractive drug target. It plays a key role in many cell pathways and many hH4R ligands are studied for the treatment of several inflammatory, allergic and autoimmune disorders, as well as for analgesic activity. Due to the challenging difficulties in the experimental elucidation of hH4R structure, virtual screening campaigns are normally run on homology based models. However, a wealth of information about the chemical properties of GPCR ligands has also accumulated over the last few years and an appropriate combination of these ligand-based knowledge with structure-based molecular modeling studies emerges as a promising strategy for computer-assisted drug design. Here, two chemoinformatics techniques, the Intelligent Learning Engine (ILE) and Iterative Stochastic Elimination (ISE) approach, were used to index chemicals for their hH4R bioactivity. An application of the prediction model on external test set composed of more than 160 hH4R antagonists picked from the chEMBL database gave enrichment factor of 16.4. A virtual high throughput screening on ZINC database was carried out, picking ∼4000 chemicals highly indexed as H4R antagonists'' candidates. Next, a series of 3D models of hH4R were generated by molecular modeling and molecular dynamics simulations performed in fully atomistic lipid membranes. The efficacy of the hH4R 3D models in discrimination between actives and non-actives were checked and the 3D model with the best performance was chosen for further docking studies performed on the focused library. The output of these docking studies was a consensus library of 11 highly active scored drug candidates. Our findings suggest that a sequential combination of ligand-based chemoinformatics approaches with structure-based ones has the potential to improve the success rate in discovering new biologically active GPCR drugs and increase the enrichment factors in a synergistic manner.  相似文献   
113.
The fusion of viruses with cells and liposomes is reviewed with focus on the analysis of the final extents and kinetics of fusion.Influenza virus andSendai virus exhibit 100% of fusion capacity with cells at pH 5 and pH 7.5, respectively. On the other hand, there may be in certain cases, a limit on the number of virions that can fuse with a single cell, that is significantly below the limit on binding. It still remains to be resolved whether this limit reflects a limited number of possible fusion sites, or a saturation limit on the amount of viral glycoproteins that can be incorporated in the cellular membrane, like the case of virus fusion with pure phospholipid vesicles, in which the fusion products were shown to consist of a single virus and several liposomes. Both viruses demonstrate incomplete fusion activity towards liposomes of a variety of compositions. In the case ofSendai virus, fusion inactive virions bind essentially irreversibly to liposomes. Yet, preliminary results revealed that such bound, unfused virions can be released by sucrose gradient centrifugation. The separated unfused virions subsequently fuse when incubated with a “fresh” batch of liposomes. We conclude, therefore, that the fraction of initially bound unfused virions does not consist of dective particles, but rather of particles bound to liposomes via “inactive” sites. Details of the low pH inactivation of fusion capacity ofinfluenza virus towards cells and liposomes are presented. This inactivation is caused by protonation and exposure of the hydrophobic segment of HA2, and affects primarily the fusion rate constants. Some degree of inactivation also occurs when virions are bound to cellular membranes.  相似文献   
114.

Background

Decline in insulin action is a metabolic feature of aging and is involved in the development of age-related diseases including Type 2 Diabetes Mellitus (T2DM) and Alzheimer''s disease (AD). A novel mitochondria-associated peptide, Humanin (HN), has a neuroprotective role against AD-related neurotoxicity. Considering the association between insulin resistance and AD, we investigated if HN influences insulin sensitivity.

Methods and Findings

Using state of the art clamp technology, we examined the role of central and peripheral HN on insulin action. Continuous infusion of HN intra-cerebro-ventricularly significantly improved overall insulin sensitivity. The central effects of HN on insulin action were associated with activation of hypothalamic STAT-3 signaling; effects that were negated by co-inhibition of hypothalamic STAT-3. Peripheral intravenous infusions of novel and potent HN derivatives reproduced the insulin-sensitizing effects of central HN. Inhibition of hypothalamic STAT-3 completely negated the effects of IV HN analog on liver, suggesting that the hepatic actions of HN are centrally mediated. This is consistent with the lack of a direct effect of HN on primary hepatocytes. Furthermore, single treatment with a highly-potent HN analog significantly lowered blood glucose in Zucker diabetic fatty rats. Based upon the link of HN with two age-related diseases, we examined if there were age associated changes in HN levels. Indeed, the amount of detectable HN in hypothalamus, skeletal muscle, and cortex was decreased with age in rodents, and circulating levels of HN were decreased with age in humans and mice.

Conclusions

We conclude that the decline in HN with age could play a role in the pathogenesis of age-related diseases including AD and T2DM. HN represents a novel link between T2DM and neurodegeneration and along with its analogues offers a potential therapeutic tool to improve insulin action and treat T2DM.  相似文献   
115.
Photosystem II (PSII), the enzyme responsible for photosynthetic oxygen evolution, is a rapidly turned over membrane protein complex. However, the factors that regulate biogenesis of PSII are poorly defined. Previous proteomic analysis of the PSII preparations from the cyanobacterium Synechocystis sp PCC 6803 detected a novel protein, Psb29 (Sll1414), homologs of which are found in all cyanobacteria and vascular plants with sequenced genomes. Deletion of psb29 in Synechocystis 6803 results in slower growth rates under high light intensities, increased light sensitivity, and lower PSII efficiency, without affecting the PSII core electron transfer activities. A T-DNA insertion line in the PSB29 gene in Arabidopsis thaliana displays a phenotype similar to that of the Synechocystis mutant. This plant mutant grows slowly and exhibits variegated leaves, and its PSII activity is light sensitive. Low temperature fluorescence emission spectroscopy of both cyanobacterial and plant mutants shows an increase in the proportion of uncoupled proximal antennae in PSII as a function of increasing growth light intensities. The similar phenotypes observed in both plant and cyanobacterial mutants demonstrate that the function of Psb29 has been conserved throughout the evolution of oxygenic photosynthetic organisms and suggest a role for the Psb29 protein in the biogenesis of PSII.  相似文献   
116.
The present study examined whether the perinephric and epididymal visceral fat (PEVF) depot under short-term excess nutrient protected the liver by trapping nutrient-derived nonesterified free fatty acids (NEFAs) or had deleterious effects on hepatic triglycerides (TGs) accumulation and insulin resistance due to adipokine secretion. Young rats pre-emptively underwent surgical PEVF removal or sham operations and were fed with either high-fat diet (HFD) (PEVF-HFD) or regular chow (RC) (PEVF-RC) for 3 days. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. Liver TG, serum NEFA, and fat-derived adipokines were assessed. Insulin and lipogenesis signaling were assessed by western blots. Pre-emptive PEVF removal significantly decreases insulin-induced suppression of hepatic glucose production (HGP) both in RC and in HFD-fed rats. In accordance with the clamp results, hepatic TG accumulation is also significantly reduced by PEVF excision both in RC and HFD-fed rats. These results are further validated by insulin signaling results, which show that pre-emptive PEVF removal increases phosphorylation of hepatic Akt, irrespective of diet. Notably, high levels of serum leptin induced by HFD are significantly reduced by pre-emptive PEVF excision. Additionally, expression of lipogenic enzyme p-acetyl-CoA-carboxylase, denoting reduced lipogenesis, is increased in the PEVF-HFD rats. In conclusion, PEVF has a deleterious effect on the liver as a source of insulin resistance-inducing adipokines irrespective of diet, and does not serve as a buffer for excess nutrients.  相似文献   
117.
118.
119.
Patient-specific high order finite-element (FE) models of human femurs based on quantitative computer tomography (QCT) with inhomogeneous orthotropic and isotropic material properties are addressed. The point-wise orthotropic properties are determined by a micromechanics (MM) based approach in conjunction with experimental observations at the osteon level, and two methods for determining the material trajectories are proposed (along organs outer surface, or along principal strains). QCT scans on four fresh-frozen human femurs were performed and high-order FE models were generated with either inhomogeneous MM-based orthotropic or empirically determined isotropic properties. In vitro experiments were conducted on the femurs by applying a simple stance position load on their head, recording strains on femurs' surface and head's displacements. After verifying the FE linear elastic analyses that mimic the experimental setting for numerical accuracy, we compared the FE results to the experimental observations to identify the influence of material properties on models' predictions. The strains and displacements computed by FE models having MM-based inhomogeneous orthotropic properties match the FE-results having empirically based isotropic properties well, and both are in close agreement with the experimental results. When only the strains in the femoral neck are being compared a more pronounced difference is noticed between the isotropic and orthotropic FE result. These results lay the foundation for applying more realistic inhomogeneous orthotropic material properties in FEA of femurs.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号