首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   98篇
  2023年   4篇
  2022年   7篇
  2021年   26篇
  2020年   9篇
  2019年   15篇
  2018年   16篇
  2017年   14篇
  2016年   15篇
  2015年   30篇
  2014年   37篇
  2013年   29篇
  2012年   58篇
  2011年   77篇
  2010年   40篇
  2009年   29篇
  2008年   43篇
  2007年   35篇
  2006年   37篇
  2005年   33篇
  2004年   33篇
  2003年   25篇
  2002年   32篇
  2001年   9篇
  2000年   13篇
  1999年   8篇
  1998年   3篇
  1997年   9篇
  1996年   4篇
  1994年   5篇
  1992年   4篇
  1990年   13篇
  1989年   3篇
  1988年   9篇
  1987年   3篇
  1986年   10篇
  1985年   10篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   4篇
  1980年   6篇
  1979年   10篇
  1978年   3篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1973年   6篇
  1972年   2篇
  1971年   4篇
  1970年   3篇
排序方式: 共有821条查询结果,搜索用时 31 毫秒
811.
Protein localization plays a central role in cell biology. Although powerful tools exist to assay the spatial and temporal dynamics of proteins in living cells, our ability to control these dynamics has been much more limited. We previously used the phytochrome B– phytochrome-interacting factor light-gated dimerization system to recruit proteins to the plasma membrane, enabling us to control the activation of intracellular signals in mammalian cells. Here we extend this approach to achieve rapid, reversible, and titratable control of protein localization for eight different organelles/positions in budding yeast. By tagging genes at the endogenous locus, we can recruit proteins to or away from their normal sites of action. This system provides a general strategy for dynamically activating or inactivating proteins of interest by controlling their localization and therefore their availability to binding partners and substrates, as we demonstrate for galactose signaling. More importantly, the temporal and spatial precision of the system make it possible to identify when and where a given protein''s activity is necessary for function, as we demonstrate for the mitotic cyclin Clb2 in nuclear fission and spindle stabilization. Our light-inducible organelle-targeting system represents a powerful approach for achieving a better understanding of complex biological systems.  相似文献   
812.
Nanopore sensing involves an electrophoretic transport of analytes through a nanoscale pore, permitting label-free sensing at the single-molecule level. However, to date, the detection of individual small proteins has been challenging, primarily due to the poor signal/noise ratio that these molecules produce during passage through the pore. Here, we show that fine adjustment of the buffer pH, close to the isoelectric point, can be used to slow down the translocation speed of the analytes, hence permitting sensing and characterization of small globular proteins. Ubiquitin (Ub) is a small protein of 8.5 kDa, which is well conserved in all eukaryotes. Ub conjugates to proteins as a posttranslational modification called ubiquitination. The immense diversity of Ub substrates, as well as the complexity of Ub modification types and the numerous physiological consequences of these modifications, make Ub and Ub chains an interesting and challenging subject of study. The ability to detect Ub and to identify Ub linkage type at the single-molecule level may provide a novel tool for investigation in the Ub field. This is especially adequate because, for most ubiquitinated substrates, Ub modifies only a few molecules in the cell at a given time. Applying our method to the detection of mono- and poly-Ub molecules, we show that we can analyze their characteristics using nanopores. Of particular importance is that two Ub dimers that are equal in molecular weight but differ in 3D structure due to their different linkage types can be readily discriminated. Thus, to our knowledge, our method offers a novel approach for analyzing proteins in unprecedented detail using solid-state nanopores. Specifically, it provides the basis for development of single-molecule sensing of differently ubiquitinated substrates with different biological significance. Finally, our study serves as a proof of concept for approaching nanopore detection of sub-10-kDa proteins and demonstrates the ability of this method to differentiate among native and untethered proteins of the same mass.  相似文献   
813.
814.
815.
816.
817.
818.
819.
820.
The parasitic larva of Telenomus remus is surrounded by giant cells throughout its first instar. These cells arise in the embryonic serosa of the parasite and grow in size, starting with a radius of 5nm and ending with 27nm. Young cells are round and mononuclear, whereas older ones are often polynuclear and have varied, irregular contours. Most cells are profusely vacuolated, the vacuoles being especially large in some of the older cells. Only a few of the giant cells are devoured by the first instar parasite larva, but all disappear at the end of this stage. No giant cells seem to be produced by supernumerary larvae. Once the parasite egg hatches, the host tissue disintegrates almost instantaneously.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号