首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   56篇
  642篇
  2023年   4篇
  2022年   8篇
  2021年   18篇
  2020年   6篇
  2019年   6篇
  2018年   14篇
  2017年   12篇
  2016年   27篇
  2015年   36篇
  2014年   47篇
  2013年   49篇
  2012年   52篇
  2011年   70篇
  2010年   41篇
  2009年   30篇
  2008年   47篇
  2007年   39篇
  2006年   47篇
  2005年   28篇
  2004年   18篇
  2003年   17篇
  2002年   12篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1990年   2篇
  1985年   1篇
  1947年   1篇
  1940年   1篇
排序方式: 共有642条查询结果,搜索用时 15 毫秒
41.
Cell wall peptidoglycan assembly is a tightly regulated process requiring the combined action of multienzyme complexes. In this study we provide direct evidence showing that substrate transformations occurring at the different stages of this process play a crucial role in the spatial and temporal coordination of the cell wall synthesis machinery. Peptidoglycan substrate alteration was investigated in the Gram-positive bacterium Lactococcus lactis by substituting the peptidoglycan precursor biosynthesis genes of this bacterium for those of the vancomycin-resistant bacterium Lactobacillus plantarum. A set of L. lactis mutant strains in which the normal d-Ala-ended precursors were partially or totally replaced by d-Lac-ended precursors was generated. Incorporation of the altered precursor into the cell wall induced morphological changes arising from a defect in cell elongation and cell separation. Structural analysis of the muropeptides confirmed that the activity of multiple enzymes involved in peptidoglycan synthesis was altered. Optimization of this altered pathway was necessary to increase the level of vancomycin resistance conferred by the utilization of d-Lac-ended peptidoglycan precursors in the mutant strains. The implications of these findings on the control of bacterial cell morphogenesis and the mechanisms of vancomycin resistance are discussed.  相似文献   
42.
In contrast to the degradation of penta-and hexachlorobiphenyls in chemostat cultures, the metabolism of PCBs by Alcaligenes sp. JB1 was shown to be restricted to PCBs with up to four chlorine substituents in resting-cell assays. Among these, the PCB congeners containing ortho chlorine substituents on both phenyl rings were found to be least degraded. Monochloro-benzoates and dichlorobenzoates were detected as metabolites. Resting cell assays with chlorobenzoates showed that JB1 could metabolize all three monochlorobenzoates and dichlorobenzoates containing only meta and para chlorine substituents, but not dichlorobenzoates possessing an ortho chlorine substituent. In enzyme activity assays, meta cleaving 2,3-dihydroxybiphenyl 1,2-dioxygenase and catechol 2,3-dioxygenase activities were constitutive, whereas benzoate dioxygenase and ortho cleaving catechol 1,2-dioxygenase activities were induced by their substrates. No activity was found for pyrocatechase II, the enzyme that is specific for chlorocatechols. The data suggest that complete mineralization of PCBs with three or more chlorine substituents by Alcaligenes sp. JB1 is unlikely.Abbreviations PCB polychlorinated biphenyls - CBA chlorobenzoate - D di - Tr tri - Te tetra - Pe penta- - H hexa  相似文献   
43.
Summary Fourteen lysosomal enzymes were compared in 20 cultured cell lines from chorionic biopsy and corresponding embryonic tissue after voluntary abortions. Enzymatic expression appears to be similar in cultured cells from both sources with some slightly higher levels for chorionic villi. We stress the importance of culturing chorionic villi especially in the case of enzymes (-L-iduronidase) or diseases (I cell disease) whose expression is unusual in fresh trophoblast tissue.  相似文献   
44.
Rubber tree (Hevea brasiliensis) is of major economic importance in Southeast Asia and for small land holders in Thailand in particular. Due to the high value of latex, plantations are expanding into unsuitable areas, such as the northeast province of Thailand where soil fertility is very low and therefore appropriate management practices are of primary importance. Arbuscular mycorrhizal fungi (AMF) contribute to plant growth through a range of mechanisms and could play a key role in a more sustainable management of the rubber plantations. We described the diversity of AMF associated with rubber tree roots in Northeast Thailand in relation to tree age and soil parameters along a chronosequence of rubber tree plantations. Cassava fields were included for comparison. Rubber tree and cassava roots harbored high diversity of AMF (111 Virtual Taxa, VT), including 20 novel VT. AMF VT richness per sample was consistently high (per site mean 16 to 21 VT per sample) along the chronosequence and was not related to soil properties. The composition of AMF communities differed between cassava and rubber tree plantations and was influenced by soil texture and nutrient content (sand, K, P, Ca). AMF community composition gradually shifted with the age of the trees. Our results suggest that the high diversity of AMF in this region is potentially significant for maintaining high functionality of AMF communities.  相似文献   
45.
Activation of caspase-1 and subsequent processing and secretion of the pro-inflammatory cytokine IL-1beta is triggered upon assembly of the inflammasome complex. It is generally believed that bacterial lipopolysaccharides (LPS) are activators of the inflammasome through stimulation of Toll-like receptor 4 (TLR4). Like TLRs, NALP3/Cryopyrin, which is a key component of the inflammasome, contains Leucine-Rich-Repeats (LRRs). LRRs are frequently used to sense bacterial components, thus raising the possibility that bacteria directly activate the inflammasome. Here, we show that bacterial peptidoglycans (PGN), but surprisingly not LPS, induce NALP3-mediated activation of caspase-1 and maturation of proIL-1beta. Activation is independent of TLRs because the PGN degradation product muramyl dipeptide (MDP), which is not sensed by TLRs, is the minimal-activating structure. Macrophages from a patient with Muckle-Wells syndrome, an autoinflammatory disease associated with mutations in the NALP3/Cryopyrin gene, show increased IL-1beta secretion in the presence of MDP. The activation of the NALP3-inflammasome by MDP may be the basis of the potent adjuvant activity of MDP.  相似文献   
46.
New series of 2(or 3)-arylmethylenenaphtho[2,1-b]furan-3(or 2)-ones were synthesized, characterized and tested for anticancer properties in vitro. The target compounds were prepared by Knoevenagel coupling between the naphthofuranones 3, 28-30 and formyl derivatives. 2-(4-Oxo-1-benzopyran-3-ylmethylene)naphtho[2,1-b]furan-3-one 36 was the most active compound (IC50 (L1210) = 1.6 microM). These compounds were also evaluated, in an independent manner, as inhibitors of Src protein tyrosine kinase, but only minor activity was observed.  相似文献   
47.
48.
Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2 as host cofactors for HCV entry. Blocking receptor kinase activity by approved inhibitors broadly impaired infection by all major HCV genotypes and viral escape variants in cell culture and in a human liver chimeric mouse model in vivo. The identified receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81-claudin-1 co-receptor associations and viral glycoprotein-dependent membrane fusion. These results identify RTKs as previously unknown HCV entry cofactors and show that tyrosine kinase inhibitors have substantial antiviral activity. Inhibition of RTK function may constitute a new approach for prevention and treatment of HCV infection.  相似文献   
49.
50.
Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号