首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10916篇
  免费   947篇
  国内免费   1374篇
  13237篇
  2024年   28篇
  2023年   131篇
  2022年   335篇
  2021年   525篇
  2020年   343篇
  2019年   496篇
  2018年   463篇
  2017年   330篇
  2016年   511篇
  2015年   747篇
  2014年   882篇
  2013年   823篇
  2012年   1084篇
  2011年   976篇
  2010年   614篇
  2009年   563篇
  2008年   650篇
  2007年   576篇
  2006年   482篇
  2005年   455篇
  2004年   374篇
  2003年   337篇
  2002年   314篇
  2001年   193篇
  2000年   131篇
  1999年   134篇
  1998年   108篇
  1997年   77篇
  1996年   74篇
  1995年   60篇
  1994年   64篇
  1993年   46篇
  1992年   48篇
  1991年   48篇
  1990年   42篇
  1989年   28篇
  1988年   15篇
  1987年   14篇
  1986年   19篇
  1985年   23篇
  1984年   4篇
  1983年   13篇
  1982年   7篇
  1981年   10篇
  1980年   4篇
  1979年   6篇
  1978年   4篇
  1972年   5篇
  1969年   5篇
  1968年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
2.
3.
4.
5.
Obesity is a world‐wide problem, especially the child obesity, with the complication of various metabolic diseases. Child obesity can be developed as early as the age between 2 and 6. The expansion of fat mass in child age includes both hyperplasia and hypertrophy of adipose tissue, suggesting the importance of proliferation and adipogenesis of preadipocytes. The changed composition of gut microbiota is associated with obesity, revealing the roles of lipopolysaccharide (LPS) on manipulating adipose tissue development. Studies suggest that LPS enters the circulation and acts as a pro‐inflammatory regulator to facilitate pathologies. Nevertheless, the underlying mechanisms behind LPS‐modulated obesity are yet clearly elucidated. This study showed that LPS enhanced the expression of cyclooxygenase‐2 (COX‐2), an inflammatory regulator of obesity, in preadipocytes. Pretreating preadipocytes with the scavenger of reactive oxygen species (ROS) or the inhibitors of NADPH oxidase or p42/p44 MAPK markedly decreased LPS‐stimulated gene expression of COX‐2 together with the phosphorylation of p47phox and p42/p44 MAPK, separately. LPS activated p42/p44 MAPK via NADPH oxidase‐dependent ROS accumulation in preadipocytes. Reduction of intracellular ROS or attenuation of p42/p44 MAPK activation both reduced LPS‐mediated COX‐2 expression and preadipocyte proliferation. Moreover, LPS‐induced preadipocyte proliferation and adipogenesis were abolished by the inhibition of COX‐2 or PEG2 receptors. Taken together, our results suggested that LPS enhanced the proliferation and adipogenesis of preadipocytes via NADPH oxidase/ROS/p42/p44 MAPK‐dependent COX‐2 expression.  相似文献   
6.
Pain is a multidimensional perception that includes unpleasant somatosensory and affective experiences; however, the underlying neural circuits that mediate different components of pain remain elusive. Although hyperactivity of basolateral amygdala glutamatergic (BLAGlu) neurons is required for the somatosensory and emotional processing of pain, the precise excitatory inputs to BLAGlu neurons and their roles in mediating different aspects of pain are unclear. Here, we identified two discrete glutamatergic neuronal circuits in male mice: a projection from the insular cortex glutamatergic (ICGlu) to BLAGlu neurons, which modulates both the somatosensory and affective components of pain, and a projection from the mediodorsal thalamic nucleus (MDGlu) to BLAGlu neurons, which modulates only the aversive-affective component of pain. Using whole-cell recording and fiber photometry, we found that neurons within the IC→BLA and MD→BLA pathways were activated in mice upon inflammatory pain induced by injection of complete Freund’s adjuvant (CFA) into their paws. Optical inhibition of the ICGlu→BLA pathway increased the nociceptive threshold and induced behavioral place preference in CFA mice. In contrast, optical inhibition of the MDGlu→BLA pathway did not affect the nociceptive threshold but still induced place preference in CFA mice. In normal mice, optical activation of the ICGlu→BLA pathway decreased the nociceptive threshold and induced place aversion, while optical activation of the MDGlu→BLA pathway only evoked aversion. Taken together, our results demonstrate that discrete ICGlu→BLA and MDGlu→BLA pathways are involved in modulating different components of pain, provide insights into its circuit basis, and better our understanding of pain perception.  相似文献   
7.
Age‐related memory impairment (AMI) is a common phenomenon across species. Vulnerability to interfering stimuli has been proposed to be an important cause of AMI. However, the molecular mechanisms underlying this vulnerability‐related AMI remain unknown. Here we show that learning‐activated MAPK signals are gradually lost with age, leading to vulnerability‐related AMI in Drosophila. Young flies (2‐ or 3‐day‐old) exhibited a significant increase in phosphorylated MAPK levels within 15 min after learning, whereas aged flies (25‐day‐old) did not. Compared to 3‐day‐old flies, significant 1 h memory impairments were observed in 15‐, 20‐, and 30‐day‐old flies, but not in 10‐day‐old flies. However, with post‐learning interfering stimuli such as cooling or electric stimuli, 10‐day‐old flies had worse memory performance at 1 h than 3‐day‐old flies, showing a premature AMI phenomenon. Increasing learning‐activated MAPK signals through acute transgene expression in mushroom body (MB) neurons restored physiological trace of 1 h memory in a pair of MB output neurons in aged flies. Decreasing such signals in young flies mimicked the impairment of 1 h memory trace in aged flies. Restoring learning‐activated MAPK signals in MB neurons in aged flies significantly suppressed AMI even with interfering stimuli. Thus, our data suggest that age‐related loss of learning‐activated neuronal MAPK signals causes memory vulnerability to interfering stimuli, thereby leading to AMI.  相似文献   
8.
BackgroundRadiation therapy (RT) is often utilized in cases of high-grade soft tissue sarcoma (STS), but there remain situations where treatment is with surgical excision alone. Our goals were to determine (1) the local recurrence (LR) rate with and without perioperative RT and (2) associations between local recurrence, patient, tumor, and treatment variables.MethodsWe performed a retrospective review of 165 consecutive STS patients. A Cox proportional hazards model was used to investigate variables associated with local recurrence.ResultsLR occurred in 15/78 (19%) without RT, 4/29 (14%) with postoperative RT, and 0/58 with preoperative RT (p=0.002). We found increased rates of local recurrence at 24 months for myxofibrosarcoma (p=0.001) and no-RT (p=0.003). Myxofibrosarcoma accounted for 33 (20%) of the study patients and 12 (63%) of the local recurrences.ConclusionThe LR rate in patients treated with surgery alone was disproportionately attributable to myxofibrosarcoma (11/23 cases, 48%). Other subtypes demonstrated a lower rate of LR in the absence of RT (4/55 cases, 7%), and no LR occurred when final margins were >2 mm. In certain circumstances treatment with a negative margin surgical resection followed by close observation is justifiable. RT is effective and should continue to be considered routinely in myxofibrosarcoma or when surgical margins are inadequate. Level of Evidence: III  相似文献   
9.
雌激素受体及其信号通路在乳腺癌的发生发展中发挥着关键作用。到目前为止,抑制或阻断雌激素信号通路的内分泌治疗尤其是他莫西芬,仍是对雌激素受体阳性乳腺癌患者最有效的治疗手段之一。然而,他莫西芬的耐药问题直接影响了乳腺癌患者的治疗及预后。最近多项研究表明雌激素受体与表皮生长因子受体家族尤其是HER2介导的信号传导通路在多个点上相互交叉,彼此影响,与他莫西芬的耐药密切相关  相似文献   
10.
Insulin and insulin-like growth factor 1 (IGF-1) share a homologous sequence, a similar three-dimensional structure and weakly overlapping biological activity, but IGF-1 folds into two thermodynamically stable disulfide isomers, while insulin folds into one unique stable tertiary structure. This is a very interesting phenomenon in which one amino acid sequence encodes two three-dimensional structures, and its molecular mechanism has remained unclear for a long time. In this study, the crystal structure of mini-IGF-1(2), a disulfide isomer of an artificial analog of IGF-1, was solved by the SAD/SIRAS method using our in-house X-ray source. Evidence was found in the structure showing that the intra-A-chain/domain disulfide bond of some molecules was broken; thus, it was proposed that disulfide isomerization begins with the breakdown of this disulfide bond. Furthermore, based on the structural comparison of IGF-1 and insulin, a new assumption was made that in insulin the several hydrogen bonds formed between the N-terminal region of the B-chain and the intra-A-chain disulfide region of the A-chain are the main reason for the stability of the intra-A-chain disulfide bond and for the prevention of disulfide isomerization, while Phe B1 and His B5 are very important for the formation of these hydrogen bonds. Moreover, the receptor binding property of IGF-1 was analyzed in detail based on the structural comparison of mini-IGF-1(2), native IGF-1, and small mini-IGF-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号