首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3818篇
  免费   318篇
  国内免费   6篇
  2024年   4篇
  2023年   26篇
  2022年   49篇
  2021年   117篇
  2020年   75篇
  2019年   80篇
  2018年   99篇
  2017年   85篇
  2016年   149篇
  2015年   221篇
  2014年   247篇
  2013年   286篇
  2012年   312篇
  2011年   319篇
  2010年   234篇
  2009年   180篇
  2008年   227篇
  2007年   199篇
  2006年   202篇
  2005年   192篇
  2004年   165篇
  2003年   160篇
  2002年   145篇
  2001年   31篇
  2000年   17篇
  1999年   26篇
  1998年   31篇
  1997年   26篇
  1996年   27篇
  1995年   22篇
  1994年   20篇
  1993年   16篇
  1992年   13篇
  1991年   13篇
  1990年   13篇
  1989年   10篇
  1988年   6篇
  1987年   11篇
  1986年   3篇
  1985年   10篇
  1984年   13篇
  1983年   10篇
  1982年   7篇
  1981年   6篇
  1980年   3篇
  1978年   7篇
  1977年   4篇
  1976年   3篇
  1975年   7篇
  1970年   3篇
排序方式: 共有4142条查询结果,搜索用时 31 毫秒
991.
1.  The evaluation of restoration measures is an important task of conservation biology. Inland sand dunes and dry, oligotrophic grasslands have become rare habitat types in large parts of Central Europe and their restoration and management is of major importance for the preservation of many endangered plant and insect species. Within such habitats, it is important to restore key ecosystem services, such as pollination networks. As wild bees are the most important pollinators in many ecosystems, they represent a suitable key group to evaluate restoration measures. Furthermore, the recent decline of many bee species and the potential ecological and economic consequences are currently topics of strong scientific interest.
2.  We studied the succession of bee communities in response to restoration measures of sand dunes and sand grasslands and compared these communities with those of old sand dune complexes.
3.  Our results show that wild bees respond rapidly to restoration measures indicated by a high species richness and abundance. The community structure of bees at restoration sites converged only slightly to those of the target sites. A higher similarity was found between bee communities at the restoration sites (sand dunes and grasslands), indicating that their close proximity was an important determinant of species overlap. Environmental factors such as the number of entomophilous plant species and moisture had a strong influence on wild bee species composition.
4.   Synthesis and applications . The restoration of inland sand dune complexes provides opportunities for colonization by a diverse wild bee community. Although it is difficult to establish a given target community, restoration measures gave rise to a high pollinator diversity and abundance, suggesting that community function can be re-established.  相似文献   
992.
Acidic pH of the Golgi lumen is known to be crucial for correct glycosylation, transport and sorting of proteins and lipids during their transit through the organelle. To better understand why Golgi acidity is important for these processes, we have examined here the most pH sensitive events in N‐glycosylation by sequentially raising Golgi luminal pH with chloroquine (CQ), a weak base. We show that only a 0.2 pH unit increase (20 µM CQ) is sufficient to markedly impair terminal α(2,3)‐sialylation of an N‐glycosylated reporter protein (CEA), and to induce selective mislocalization of the corresponding α(2,3)‐sialyltransferase (ST3) into the endosomal compartments. Much higher pH increase was required to impair α(2,6)‐sialylation, or the proximal glycosylation steps such as β(1,4)‐galactosylation or acquisition of Endo H resistance, and the steady‐state localization of the key enzymes responsible for these modifications (ST6, GalT I, MANII). The overall Golgi morphology also remained unaltered, except when Golgi pH was raised close to neutral. By using transmembrane domain chimeras between the ST6 and ST3, we also show that the luminal domain of the ST6 is mainly responsible for its less pH sensitive localization in the Golgi. Collectively, these results emphasize that moderate Golgi pH alterations such as those detected in cancer cells can impair N‐glycosylation by inducing selective mislocalization of only certain Golgi glycosyltransferases. J. Cell. Physiol. 220: 144–154, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
993.
The role of the unique fully conserved tryptophan in metallopeptidase family M49 (dipeptidyl peptidase III family) was investigated by site-directed mutagenesis on human dipeptidyl peptidase III (DPP III) where Trp300 was subjected to two substitutions (W300F and W300L). The mutant enzymes showed thermal stability equal to the wild-type DPP III. Conservative substitution of the Trp300 with phenylalanine decreased enzyme activity 2-4 fold, but did not significantly change the Km values for two dipeptidyl 2-naphthylamide substrates. However, the Km for the W300L mutant was elevated 5-fold and the kcat value was reduced 16-fold with Arg-Arg-2-naphthylamide. Both substitutions had a negative effect on the binding of two competitive inhibitors designed to interact with S1 and S2 subsites.These results indicate the importance of the aromatic nature of W300 in DPP III ligand binding and catalysis, and contribution of this residue in maintaining the functional integrity of this enzyme’s S2 subsite.  相似文献   
994.
995.
Helicobacter pylori infection of the human stomach is associated with disease-causing inflammation that elicits DNA damage in both bacterial and host cells. Bacteria must repair their DNA to persist. The H. pylori AddAB helicase-exonuclease is required for DNA repair and efficient stomach colonization. To dissect the role of each activity in DNA repair and infectivity, we altered the AddA and AddB nuclease (NUC) domains and the AddA helicase (HEL) domain by site-directed mutagenesis. Extracts of Escherichia coli expressing H. pylori addANUCB or addABNUC mutants unwound DNA but had approximately half of the exonuclease activity of wild-type AddAB; the addANUCBNUC double mutant lacked detectable nuclease activity but retained helicase activity. Extracts with AddAHELB lacked detectable helicase and nuclease activity. H. pylori with the single nuclease domain mutations were somewhat less sensitive to the DNA-damaging agent ciprofloxacin than the corresponding deletion mutant, suggesting that residual nuclease activity promotes limited DNA repair. The addANUC and addAHEL mutants colonized the stomach less efficiently than the wild type; addBNUC showed partial attenuation. E. coli ΔrecBCD expressing H. pylori addAB was recombination-deficient unless H. pylori recA was also expressed, suggesting a species-specific interaction between AddAB and RecA and also that H. pylori AddAB participates in both DNA repair and recombination. These results support a role for both the AddAB nuclease and helicase in DNA repair and promoting infectivity.Infection of the stomach with Helicobacter pylori causes a variety of diseases including gastritis, peptic ulcers, and gastric cancer (1). A central feature of the pathology of these conditions is the establishment of a chronic inflammatory response that acts both on the host and the infecting bacteria (2). Both epithelial (3, 4) and lymphoid (5, 6) cells in the gastric mucosa of infected individuals release DNA-damaging agents that can introduce double-stranded (ds)2 breaks into the bacterial chromosome (7). The ds breaks must be repaired for the bacteria to survive and establish chronic colonization of the stomach. Homologous recombination is required for the faithful repair of DNA damage and bacterial survival. Alteration of the expression of one of a series of cell surface proteins on H. pylori occurs by an apparent gene conversion of babA, the frequency of which is reduced in repair-deficient strains (8, 9). This change in the cell surface, which may allow H. pylori to evade the host immune response, is a second means by which recombination can promote efficient colonization of the stomach by H. pylori.The initiation or presynaptic steps of recombination at dsDNA breaks in most bacteria involves the coordinated action of nuclease and helicase activities provided by one of two multisubunit enzymes, the AddAB and RecBCD enzymes (10). Escherichia coli recBCD null mutants have reduced cell viability, are hypersensitive to DNA-damaging agents, and are homologous recombination-deficient (1114). Similarly, H. pylori addA and addB null mutants are hypersensitive to DNA-damaging agents, have reduced frequencies of babA gene conversion, and colonize the stomach of mice less efficiently than wild-type strains (8).The activities of RecBCD enzyme from E. coli (1519) and AddAB from H. pylori (8) or Bacillus subtilis (2023) indicate some common general features of the presynaptic steps of DNA repair. In the case of E. coli, repair begins when the RecBCD enzyme binds to a dsDNA end and unwinds the DNA using its ATP-dependent helicase activities (17, 24). Single-stranded (ss) DNA produced during unwinding, with or without accompanying nuclease, is coated with RecA protein (16, 25). This recombinogenic substrate engages in strand exchange with a homologous intact duplex to form a joint molecule. Joint molecules are thought to be converted into intact, recombinant DNA either by replication or by cutting and ligation of exchanged strands (26).Although the AddAB and RecBCD enzymes appear to play similar roles in promoting recombination and DNA repair, they differ in several ways. RecBCD is a heterotrimer, composed of one copy of the RecB, RecC, and RecD gene products (27), whereas AddAB has two subunits, encoded by the addA and addB genes (21, 28). The enzyme subunit(s) responsible for helicase activity can be inferred from the presence of conserved protein domains or the activity of purified proteins. AddA, RecB, and RecD are superfamily I helicases with six highly conserved helicase motifs, including the conserved Walker A box found in many enzymes that bind ATP (2932). A Walker A box is defined by the consensus sequence (G/A)XXGXGKT (X is any amino acid (29). RecBCD enzymes in which the conserved Lys in this motif is changed to Gln have a reduced affinity for ATP binding (33, 34) and altered helicase activity (17, 3537).A nuclease domain with the conserved amino acid sequence LDYK is found in RecB, AddA, AddB, and many other nucleases (38). The conserved Asp plays a role in Mg2+ binding at the active site; Mg2+ is required for nuclease activity (39). The recB1080 mutation, which changes codon 1080 from the conserved Asp in this motif to Ala, eliminates nuclease activity (39).We have recently shown that addA and addB deletion mutants are hypersensitive to DNA-damaging agents and impaired in colonization of the mouse stomach compared with wild-type strains (8). To determine the roles of the individual helicase and nuclease activities of H. pylori AddAB in DNA repair and infectivity, we used site-directed mutagenesis to inactivate the conserved nuclease domains of addA and addB and the conserved ATPase (helicase) domain of AddA. Here, we report that loss of the AddAB helicase is sufficient to impair H. pylori DNA repair and infectivity and, when the genes are expressed in E. coli, homologous recombination. AddAB retains partial activity in biochemical and genetic assays when either of the two nuclease domains is inactivated but loses all detectable nuclease activity when both domains are inactivated. Remarkably, H. pylori AddAB can produce recombinants in E. coli only in the presence of H. pylori RecA, suggesting a species-specific interaction in which AddAB facilitates the production of ssDNA-coated with RecA protein. Our results show that both the helicase and nuclease activities are required for the biological roles of H. pylori AddAB.  相似文献   
996.
Transplantation of human neural stem cells (NSCs) and their derivatives is a promising future treatment for neurodegenerative disease and traumatic nervous system lesions. An important issue is what kind of immunological reaction the cellular transplant and host interaction will result in. Previously, we reported that human NSCs, despite expressing MHC class I and class II molecules, do not trigger an allogeneic T cell response. Here, the immunocompetence of human NSCs, as well as differentiated neural cells, was further studied. Astrocytes expressed both MHC class I and class II molecules to a degree equivalent to that of the NSCs, whereas neurons expressed only MHC class I molecules. Neither the NSCs nor the differentiated cells triggered an allogeneic lymphocyte response. Instead, these potential donor NSCs and astrocytes, but not the neurons, exhibited a suppressive effect on an allogeneic immune response. The suppressive effect mediated by NSCs most likely involves cell–cell interaction. When the immunogenicity of human NSCs was tested in an acute spinal cord injury model in rodent, a xenogeneic rejection response was triggered. Thus, human NSCs and their derived astrocytes do not initiate, but instead suppress, an allogeneic response, while they cannot block a graft rejection in a xenogeneic setting.  相似文献   
997.

Background

The requirements for priming of HIV-specific T cell responses initially seen in infected individuals remain to be defined. Activation of T cell responses in lymph nodes requires cell-cell contact between T cells and DCs, which can give concurrent activation of T cells and HIV transmission.

Methodology

The study aim was to establish whether DCs pulsed with HIV-1 could prime HIV-specific T cell responses and to characterize these responses. Both infectious and aldrithiol-2 inactivated noninfectious HIV-1 were compared to establish efficiencies in priming and the type of responses elicited.

Findings

Our findings show that both infectious and inactivated HIV-1 pulsed DCs can prime HIV-specific responses from naïve T cells. Responses included several CD4+ and CD8+ T cell epitopes shown to be recognized in vivo by acutely and chronically infected individuals and some CD4+ T cell epitopes not identified previously. Follow up studies of acute and recent HIV infected samples revealed that these latter epitopes are among the earliest recognized in vivo, but the responses are lost rapidly, presumably through activation-induced general CD4+ T cell depletion which renders the newly activated HIV-specific CD4+ T cells prime targets for elimination.

Conclusion

Our studies highlight the ability of DCs to efficiently prime naïve T cells and induce a broad repertoire of HIV-specific responses and also provide valuable insights to the pathogenesis of HIV-1 infection in vivo.  相似文献   
998.
Interactions between biomolecules and nanoparticles suggest the use of nanoparticles for various medical interventions. The attachment and entry of herpes simplex virus type 1 (HSV-1) into cells involve interaction between viral envelope glycoproteins and cell surface heparan sulfate (HS). Based on this mechanism, we designed silver nanoparticles that are capped with mercaptoethane sulfonate (Ag-MES). These nanoparticles are predicted to target the virus and to compete for its binding to cellular HS through their sulfonate end groups, leading to the blockage of viral entry into the cell and to the prevention of subsequent infection. Structurally defined Ag-MES nanoparticles that are readily redispersible in water were sonochemically synthesized. No toxic effects of these nanoparticles on host cells were observed. Effective inhibition of HSV-1 infection in cell culture by the capped nanoparticles was demonstrated. However, application of the soluble surfactant MES failed to inhibit viral infection, implying that the antiviral effect of Ag-MES nanoparticles is imparted by their multivalent nature and spatially directed MES on the surface. Our results suggest that capped nanoparticles may serve as useful topical agents for the prevention of infections with pathogens dependent on HS for entry.  相似文献   
999.
We have developed an Escherichia coli expression vector that is particularly useful for construction and production of fusion proteins. Based on the synthetic biology pSB1C3 platform, the resulting vector offers a combination of useful features: the strong T7 promoter combined with lac operator, OmpA signal sequence, a selection of cloning sites located at convenient positions and a 3′-terminal His-10 tag. Each of these regions is flanked by a restriction site that allows for easy vector modification, including removal of the signal sequence without perturbation of the reading frame. All the elements were assembled by stepwise addition of three cassettes for which the design was made de novo. To prove the efficiency of the new vector, named pMD204, we successfully produced a cysteine proteinase inhibitor variant in the periplasm and in the cytoplasm of E. coli, in both cases as a soluble and active protein.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号