首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3662篇
  免费   301篇
  国内免费   6篇
  3969篇
  2024年   5篇
  2023年   28篇
  2022年   71篇
  2021年   116篇
  2020年   73篇
  2019年   72篇
  2018年   93篇
  2017年   79篇
  2016年   142篇
  2015年   215篇
  2014年   235篇
  2013年   267篇
  2012年   301篇
  2011年   309篇
  2010年   225篇
  2009年   171篇
  2008年   212篇
  2007年   191篇
  2006年   200篇
  2005年   188篇
  2004年   157篇
  2003年   156篇
  2002年   141篇
  2001年   27篇
  2000年   18篇
  1999年   19篇
  1998年   26篇
  1997年   24篇
  1996年   23篇
  1995年   19篇
  1994年   20篇
  1993年   16篇
  1992年   11篇
  1991年   10篇
  1990年   10篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   10篇
  1984年   13篇
  1983年   10篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   7篇
  1970年   3篇
排序方式: 共有3969条查询结果,搜索用时 15 毫秒
101.

Background  

Bacterial penicillin-binding proteins and β-lactamases (PBP-βLs) constitute a large family of serine proteases that perform essential functions in the synthesis and maintenance of peptidoglycan. Intriguingly, genes encoding PBP-βL homologs occur in many metazoan genomes including humans. The emerging role of LACTB, a mammalian mitochondrial PBP-βL homolog, in metabolic signaling prompted us to investigate the evolutionary history of metazoan PBP-βL proteins.  相似文献   
102.
Tailed bacteriophages specific for Gram‐negative bacteria encounter lipopolysaccharide (LPS) during the first infection steps. Yet, it is not well understood how biochemistry of these initial interactions relates to subsequent events that orchestrate phage adsorption and tail rearrangements to initiate cell entry. For many phages, long O‐antigen chains found on the LPS of smooth bacterial strains serve as essential receptor recognized by their tailspike proteins (TSP). Many TSP are depolymerases and O‐antigen cleavage was described as necessary step for subsequent orientation towards a secondary receptor. However, O‐antigen specific host attachment must not always come along with O‐antigen degradation. In this issue of Molecular Microbiology Prokhorov et al. report that coliphage G7C carries a TSP that deacetylates O‐antigen but does not degrade it, whereas rough strains or strains lacking O‐antigen acetylation remain unaffected. Bacteriophage G7C specifically functionalizes its tail by attaching the deacetylase TSP directly to a second TSP that is nonfunctional on the host's O‐antigen. This challenges the view that bacteriophages use their TSP only to clear their way to a secondary receptor. Rather, O‐antigen specific phages may employ enzymatically active TSP as a tool for irreversible LPS membrane binding to initiate subsequent infection steps.  相似文献   
103.
104.
105.
Current theory postulates that the operational sex ratio (OSR)determines the relative degree of mating competition in thetwo sexes and is in turn influenced by a sexual difference inthe potential reproductive rate (PRR) denned as 1/time out,where time out is the time an individual must spend recoveringfrom a bout of mating activity and/or caring for offspring.In bushcricket mating systems where males provide females witha nuptial gift, relative energy expenditure in offspring influencesthe PRR of males and females and underlies a diet-mediated shiftin the OSR. Here we investigated if there is a similar positiverelationship between relative parental nutrient expenditurein offspring and PRR in the polyandrous butterfly Pieris napi,where female fecundity is strongly dependent on male nuptialgifts at mating. By varying the amount of nutrients femalesreceive at mating and relating this to number of offspring produced,we show that male P. napi have, on average, a nutrient expenditurein offspring equaling that of females. In spite of this, themale reproductive rate is 8–13 times higher than thatof females. Hence the relative degree of parental expenditurein offspring is largely decoupled from the degree of matingcompetition in P. napi. Two alternative explanations are advancedto account for the difference between the butterfly and thebushcricket mating systems.  相似文献   
106.
For four temperate lakes (Northeast U.S.A.) we identify periods of persistent phytoplankton assemblages and investigate the ecological conditions that correlate to these persistent assemblages. Periods of persistent assemblages, here considered as steady-state phases, were defined according to equilibrium criteria (two or three coexisting species, contributing to 80% of the standing biomass, for at least 2 weeks) defined by Sommer et al. (1993, Hydrobiologia 249: 1–7). For all four lakes, samples were taken weekly during the ice-free season and phytoplankton attributes (biomass, assemblages, diversity, species richness, change rates) and abiotic variables (temperature, I* – as light mean in the mixing zone – zmix, and nutrients) were analysed. Chodikee (CH), an eutrophic and rapidly flushed lake, did not show any persistent phase. The remaining three lakes showed single steady-state phases that occurred at varying times during the ice-free season. Steady-state phases occurred during early stratification in late spring in the stably stratified oligotrophic Mohonk Lake (MO), in the late summer stratification in the meso-eutrophic Stissing Lake (ST), and during spring mixing in Wononscopomuc Lake (WO). MO showed a 3-week period with dominance of F assemblage (Botryococcus braunii, Willea wilhelmii and Eutetramorus planctonicus), characteristic for clear epilimnia, tolerant to low nutrient and sensitive to high turbidity. For three weeks, ST had a stable assemblage with dominance of Lo(Woronichinia sp.), common assemblage in summer epilimnion of mesotrophic lakes and sensitive to prolonged or deep mixing; and P, assemblage able to live in eutrophic epilimnia with mild light and sensitive to stratification and silica depletion. In contrast, the mesotrophic Wononscopomuc Lake (WO) showed persistent assemblages during a 4-week period of spring circulation, when a dinoflagellate (Lo) was co-dominant with Nitzschia acicularis (C). The latter species is characteristic for mesotrophic lakes, tolerant to low light and sensitive to stratification and silica depletion. Both Lo and P assemblages, among seven others, had before been quoted, in literature, as dominant in maturing stages. We could not find consistent statistical differences between the periods classified as steady-state and non-steady-state. However, the data demonstrated that prolonged period of both mixing and stratification can maintain dominant assemblages. Although, historically sensed as opposite mechanisms, both mixing and stratification, if persistent, were observed maintaining dominant assemblages because both scenarios are characterized by environmental constancy.  相似文献   
107.
The eukaryotic replication factor C (RFC) clamp loader is an AAA+ spiral-shaped heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp processivity factor on DNA. In this study, we examined the roles of individual RFC subunits in opening the PCNA clamp. Interestingly, Rfc1, which occupies the position analogous to the delta clamp-opening subunit in the Escherichia coli clamp loader, is not required to open PCNA. The Rfc5 subunit is required to open PCNA. Consistent with this result, Rfc2.3.4.5 and Rfc2.5 subassemblies are capable of opening and unloading PCNA from circular DNA. Rfc5 is positioned opposite the PCNA interface from Rfc1, and therefore, its action with Rfc2 in opening PCNA indicates that PCNA is opened from the opposite side of the interface that the E. coli delta wrench acts upon. This marks a significant departure in the mechanism of eukaryotic and prokaryotic clamp loaders. Interestingly, the Rad.RFC DNA damage checkpoint clamp loader unloads PCNA clamps from DNA. We propose that Rad.RFC may clear PCNA from DNA to facilitate shutdown of replication in the face of DNA damage.  相似文献   
108.
Major glyco- and phospholipids as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from five species of marine macrophytes harvested in the Sea of Japan in summer and winter at seawater temperatures of 20-23 and 3 degrees C, respectively. GC and DSC analysis of lipids revealed a common increase of ratio between n-3 and n-6 polyunsaturated fatty acids (PUFAs) of polar lipids from summer to winter despite their chemotaxonomically different fatty acid (FA) composition. Especially, high level of different n-3 PUFAs was observed in galactolipids in winter. However, the rise in FA unsaturation did not result in the lowering of peak maximum temperature of phase transition of photosynthetic lipids (glycolipids and phosphatidylglycerol (PG)) in contrast to non-photosynthetic ones [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)]. Different thermotropic behavior of these lipid groups was accompanied by higher content of n-6 PUFAs from the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG in both seasons. Seasonal changes of DSC transitions and FA composition of DGTS studied for the first time were similar to PC and PE. Thermograms of all polar lipids were characterized by complex profiles and located in a wide temperature range between -130 and 80 degrees C, while the most evident phase separation occurred in PGs in both seasons. Polarizing microscopy combined with DSC has shown that the liquid crystal - isotropic melt transitions of polar lipids from marine macrophytes began from 10 to 30 degrees C mostly, which can cause the thermal sensitivity of plants to superoptimal temperatures in their environment.  相似文献   
109.
Alveolar macrophages play an important role in the distribution, clearance and inflammatory reactions after particle inhalation, which may influence long-term events such as fibrosis and tumorigenesis. The objectives of the present study were to investigate the early inflammatory events after plutonium oxide inhalation in rats and involvement of alveolar macrophages. Lung changes were studied from 3 days to 3 months after inhalation of PuO2 of different isotopic compositions (70% or 97% 239Pu) and initial lung deposits (range 2.1 to 43.4 kBq/rat). Analyses of bronchoalveolar lavages showed early increases in the numbers of granulocytes, lymphocytes and multinucleated macrophages. The activation of macrophages was evaluated ex vivo by measurement of inflammatory mediator levels in culture supernatants. TNF-alpha and chemokine MCP-1, MIP-2 and CINC-1 production was elevated from 7 days after inhalation and remained so up to 3 months. In contrast, IL-1beta, IL-6 and IL-10 production was unchanged. At 6 weeks, pulmonary macrophage numbers and activation state were increased as observed from an immunohistochemistry study of lung sections with anti-ED1. Similarly, histological analyses of lung sections also showed evidence of inflammatory responses. In conclusion, our results indicate early inflammatory changes in the lungs of PuO2-contaminated animals and the involvement of macrophages in this process. A dose-effect relationship was observed between the amount of radionuclide inhaled or retained at the time of analysis and inflammatory mediator production by alveolar macrophages 14 days after exposure. For similar initial lung deposits, the inflammatory manifestation appears higher for 97% 239Pu than for 70% 239Pu.  相似文献   
110.
The Sec1/Munc18 (SM) proteins constitute a conserved family with essential functions in SNARE‐mediated membrane fusion. Recently, a new protein–protein interaction site in Sec1p, designated the groove, was proposed. Here, we show that a sec1 groove mutant yeast strain, sec1(w24), displays temperature‐sensitive growth and secretion defects. The yeast Sec1p and mammalian Munc18‐1 grooves were shown to play an important role in the interaction with the SNAREs Sec9p and SNAP‐25b, respectively. Incubation of SNAP‐25b with the Munc18‐1 groove mutant resulted in a lag in the kinetics of SNARE complex assembly in vitro when compared with wild‐type Munc18‐1. The SNARE regulator SRO7 was identified as a multicopy suppressor of sec1(w24) groove mutant and an intact Sec1p groove was required for the plasma membrane targeting of Sro7p–SNARE complexes. Simultaneous inactivation of Sec1p groove and SRO7 resulted in reduced levels of exocytic SNARE complexes. Our results identify the groove as a conserved interaction surface in SM proteins. The results indicate that this structural element is important for interactions with Sec9p/SNAP‐25 and participates, in concert with Sro7p, in the initial steps of SNARE complex assembly.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号