首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   26篇
  国内免费   2篇
  388篇
  2024年   1篇
  2023年   4篇
  2022年   17篇
  2021年   18篇
  2020年   11篇
  2019年   23篇
  2018年   23篇
  2017年   12篇
  2016年   19篇
  2015年   18篇
  2014年   15篇
  2013年   33篇
  2012年   35篇
  2011年   32篇
  2010年   25篇
  2009年   14篇
  2008年   11篇
  2007年   13篇
  2006年   11篇
  2005年   12篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2000年   1篇
  1999年   3篇
  1997年   2篇
  1995年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1983年   2篇
  1979年   1篇
排序方式: 共有388条查询结果,搜索用时 62 毫秒
61.
Keratoconus is a progressive bilateral corneal protrusion that leads to irregular astigmatism and impairment of vision. Keratoconus is an etiologically heterogeneous corneal dystrophy and both environmental and genetic factors play a role in its etiopathogenesis. In this analytical review, we have studied all the genes that are structurally associated with keratoconus and have tried to explain the function of each gene and its association with other eye disorders in a concise way. In addition, using gene set enrichment analysis, it was attempted to find the most important impaired metabolic pathways in keratoconus. Several genetic studies have been carried out on keratoconus and several genes have been identified as risk factors involved in the etiology of the disease. In the current study, 16 studies, including nine association studies, five genome-wide association studies, one linkage study, and one meta-analysis, were reviewed and based on the 19 genes found, enrichment was performed and the most important metabolic pathways involved in the disease were identified. The enrichment results indicated that the two pathways, interleukin 1 processing and assembly of collagen fibrils, are significantly associated with the disease. Obviously, the results of this study, in addition to providing information about the genes involved in the disease, can provide an integrated insight into the gene-based etiology of keratoconus and therapeutic opportunities thereof.  相似文献   
62.
63.
The sodium-potassium ATPase (Na/K-ATPase, NKA) establishes ion gradients that facilitate many physiological functions including action potentials and secondary transport processes. NKA comprises a catalytic subunit (alpha) that interacts closely with an essential subunit (beta) and regulatory transmembrane micropeptides called FXYD proteins. In the heart, a key modulatory partner is the FXYD protein phospholemman (PLM, FXYD1), but the stoichiometry of the alpha–beta–PLM regulatory complex is unknown. Here, we used fluorescence lifetime imaging and spectroscopy to investigate the structure, stoichiometry, and affinity of the NKA-regulatory complex. We observed a concentration-dependent binding of the subunits of NKA–PLM regulatory complex, with avid association of the alpha subunit with the essential beta subunit as well as lower affinity alpha–alpha and alpha–PLM interactions. These data provide the first evidence that, in intact live cells, the regulatory complex is composed of two alpha subunits associated with two beta subunits, decorated with two PLM regulatory subunits. Docking and molecular dynamics (MD) simulations generated a structural model of the complex that is consistent with our experimental observations. We propose that alpha–alpha subunit interactions support conformational coupling of the catalytic subunits, which may enhance NKA turnover rate. These observations provide insight into the pathophysiology of heart failure, wherein low NKA expression may be insufficient to support formation of the complete regulatory complex with the stoichiometry (alpha-beta-PLM)2.  相似文献   
64.
The function of protein phosphatase 1 nuclear-targeting subunit (PNUTS)--one of the most abundant nuclear-targeting subunits of protein phosphatase 1 (PP1c)--remains largely uncharacterized. We show that PNUTS depletion by small interfering RNA activates a G2 checkpoint in unperturbed cells and prolongs G2 checkpoint and Chk1 activation after ionizing-radiation-induced DNA damage. Overexpression of PNUTS-enhanced green fluorescent protein (EGFP)--which is rapidly and transiently recruited at DNA damage sites--inhibits G2 arrest. Finally, γH2AX, p53-binding protein 1, replication protein A and Rad51 foci are present for a prolonged period and clonogenic survival is decreased in PNUTS-depleted cells after ionizing radiation treatment. We identify the PP1c regulatory subunit PNUTS as a new and integral component of the DNA damage response involved in DNA repair.  相似文献   
65.
Beh?et's disease (BD) is a chronic, systemic disease, characterized by oral and genital lesions, and ocular inflammation. There is evidence indicating altered levels of proinflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) in patients with BD. This study involved 150 patients with BD and 140 healthy controls, and investigated the role of proinflammatory cytokine gene polymorphisms in the disease. The frequency of the TNF-α (-238) G/G genotype was significantly higher in the patient group, compared to the controls (p < 0.001), whilst the G/A genotype was significantly lower in the patients with BD (p < 0.001). Patients with BD showed a significant increase in the TNF-α (- 308, - 238) GG haplotype (p < 0.001), whilst there was a significant decrease in the GA haplotype (p < 0.001). The heterozygous, IL-6 (- 174) C/G genotype (p = 0.005), and the IL-6 (- 174, nt565) haplotype CG (p < 0.001), were significantly decreased in the patient group. The increased production of proinflammatory cytokines in BD could be a consequence of specific, cytokine gene polymorphisms. Particular genotypes and haplotypes in TNF-α were over-represented in BD, which may, in turn, predispose individuals to this disease.  相似文献   
66.

Up to present, a large number of reports unveiled exacerbating effects of both long- and short-term administration of morphine, as a potent analgesic agent, on opium-addicted individuals and a plethora of cell kinetics, although contradictory effect of morphine on different cells have been introduced until yet. To address the potent modulatory effect of morphine on neural multipotent precursors with emphasis on endogenous sex-related neurosteroids biosynthesis, we primed the rat neural stem cells isolated from embryonic rat telencephalon to various concentrations of morphine including 10, 20, 50 and 100 µM alone or in combination with naloxone (100 µM) over period of 72 h. Flow cytometric Ki-67 expression and Annexin-V/PI based necrosis and apoptosis of exposed cells were evaluated. The total content of dihydrotestosterone and estradiol in cell supernatant was measured by ELISA. According on obtained data, both concentration- and time-dependent decrement of cell viability were orchestrated thorough down-regulation of ki-67 and simultaneous up-regulation of Annexin-V. On the other hand, the addition of naloxone (100 µM), as Mu opiate receptor antagonist, could blunt the morphine-induced adverse effects. It also well established that time-course exposure of rat neural stem cells with morphine potently could accelerate the endogenous dihydrotestosterone and estradiol biosynthesis. Interestingly, naloxone could consequently attenuate the enhanced neurosteroidogenesis time-dependently. It seems that our results discover a biochemical linkage between an accelerated synthesis of sex-related steroids and rat neural stem cells viability.

  相似文献   
67.
68.
Trauma such as burns induces a hypermetabolic response associated with altered central carbon and nitrogen metabolism. The liver plays a key role in these metabolic changes; however, studies to date have evaluated the metabolic state of liver using ex vivo perfusions or isotope labeling techniques targeted to specific pathways. Herein, we developed a unique mass balance approach to characterize the metabolic state of the liver in situ, and used it to quantify the metabolic changes to experimental burn injury in rats. Rats received a sham (control uninjured), 20% or 40% total body surface area (TBSA) scald burn, and were allowed to develop a hypermetabolic response. One day prior to evaluation, all animals were fasted to deplete glycogen stores. Four days post-burn, blood flow rates in major vessels of the liver were measured, and blood samples harvested. We combined measurements of metabolite concentrations and flow rates in the major vessels entering and leaving the liver with a steady-state mass balance model to generate a quantitative picture of the metabolic state of liver. The main findings were: (1) Sham-burned animals exhibited a gluconeogenic pattern, consistent with the fasted state; (2) the 20% TBSA burn inhibited gluconeogenesis and exhibited glycolytic-like features with very few other significant changes; (3) the 40% TBSA burn, by contrast, further enhanced gluconeogenesis and also increased amino acid extraction, urea cycle reactions, and several reactions involved in oxidative phosphorylation. These results suggest that increasing the severity of injury does not lead to a simple dose-dependent metabolic response, but rather leads to qualitatively different responses.  相似文献   
69.
Parkinson’s disease (PD) is a debilitating neurodegenerative disorder, for which people above the age of 60 show an increased risk. Although there has been great advancement in understanding the disease-related abnormalities in brain circuitry and development of symptomatic treatments, a cure for PD remains elusive. The discovery of PD associated gene mutations and environmental toxins have yielded animal models of the disease. These models could recapitulate several key aspects of PD, and provide more insights into the disease pathogenesis. They have also revealed novel aspects of the disease mechanism including noncell autonomous events and spreading of pathogenic protein species across the brain. Nevertheless, none of these models so far can comprehensively represent all aspects of the human disease. While the field is still searching for the perfect model system, recent developments in stem cell biology have provided a new dimension to modelling PD, especially doing it in a patient-specific manner. In the current review, we attempt to summarize the key findings in the areas discussed above, and highlight how the core PD pathology distinguishes itself from other neurodegenerative disorders while also resembling them in many aspects.  相似文献   
70.
Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti‐inflammatory drugs prompt the identification of new therapeutic strategies. Plant‐derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed‐phase high‐performance liquid chromatography coupled to electrospray ionization quadrupole time‐of‐flight mass spectrometry (RP‐HPLC–ESI‐Q‐TOF‐MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre‐treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre‐treatment with LEVs decreased gene and protein expression of pro‐inflammatory cytokines, such as IL‐6, IL1‐β and TNF‐α, and reduced the nuclear translocation and phosphorylation of NF‐κB in LPS‐stimulated murine macrophages. The inhibition of NF‐κB activation was associated with the reduction in ERK1‐2 phosphorylation. Furthermore, the ability of LEVs to decrease pro‐inflammatory cytokines and increase anti‐inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti‐inflammatory effects both in vitro and ex vivo by inhibiting the ERK1‐2/NF‐κB signalling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号