首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   22篇
  国内免费   1篇
  2023年   2篇
  2022年   15篇
  2021年   10篇
  2020年   6篇
  2019年   12篇
  2018年   14篇
  2017年   6篇
  2016年   13篇
  2015年   16篇
  2014年   12篇
  2013年   23篇
  2012年   31篇
  2011年   26篇
  2010年   22篇
  2009年   11篇
  2008年   10篇
  2007年   12篇
  2006年   7篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1983年   1篇
  1973年   1篇
排序方式: 共有279条查询结果,搜索用时 78 毫秒
261.
Inverse-probability-weighted estimators are the oldest and potentially most commonly used class of procedures for the estimation of causal effects. By adjusting for selection biases via a weighting mechanism, these procedures estimate an effect of interest by constructing a pseudopopulation in which selection biases are eliminated. Despite their ease of use, these estimators require the correct specification of a model for the weighting mechanism, are known to be inefficient, and suffer from the curse of dimensionality. We propose a class of nonparametric inverse-probability-weighted estimators in which the weighting mechanism is estimated via undersmoothing of the highly adaptive lasso, a nonparametric regression function proven to converge at nearly n 1 / 3 $ n^{-1/3}$ -rate to the true weighting mechanism. We demonstrate that our estimators are asymptotically linear with variance converging to the nonparametric efficiency bound. Unlike doubly robust estimators, our procedures require neither derivation of the efficient influence function nor specification of the conditional outcome model. Our theoretical developments have broad implications for the construction of efficient inverse-probability-weighted estimators in large statistical models and a variety of problem settings. We assess the practical performance of our estimators in simulation studies and demonstrate use of our proposed methodology with data from a large-scale epidemiologic study.  相似文献   
262.
Experimental and clinical studies have confirmed safety and the medical benefits of probiotics as immunomodulatory medications. Recent advances have emphasized the critical effect of gastrointestinal bacteria in the pathology of inflammatory disorders, even, outside the gut. Probiotics have shown promising results for curing skin-influencing inflammatory disorders through modulating the immune response by manipulating the gut microbiome. Psoriasis is a complex inflammatory skin disease, which exhibits a microbiome distinct from the normal skin. In the present review, we considered the impact of gastrointestinal microbiota on the psoriasis pathogenesis, and through literature survey, attempted to explore probiotic species utilized for psoriasis treatment.  相似文献   
263.

Rabies virus (RABV) is a neurotropic virus exclusively infecting neurons in the central nervous system. RABV encodes five proteins. Among them, the viral glycoprotein (RVG) plays a key role in viral entry into neurons and rabies pathogenesis. It was shown that the nature of the C-terminus of the RABV G protein, which possesses a PDZ-binding motif (PBM), modulates the virulence of the RABV strain. The neuronal protein partners recruited by this PBM may alter host cell function. This study was conducted to investigate the effect of RVG on synaptic function in the hippocampal dentate gyrus (DG) of rat. Two μl (108 T.U./ml) of the lentiviral vector containing RVG gene was injected into the DG of rat hippocampus. After 2 weeks, the rat’s brain was cross-sectioned and RVG-expressing cells were detected by fluorescent microscopy. Hippocampal synaptic activity of the infected rats was then examined by recording the local field potentials from DG after stimulation of the perforant pathway. Short-term synaptic plasticity was also assessed by double pulse stimulation. Expression of RVG in DG increased long-term potentiation population spikes (LTP-PS), whereas no facilitation of LTP-PS was found in neurons expressing δRVG (deleted PBM). Furthermore, RVG and δRVG strengthened paired-pulse facilitation. Heterosynaptic long-term depression (LTD) in the DG was significantly blocked in RVG-expressing group compared to the control group. This blockade was dependent to PBM motif as rats expressing δRVG in the DG-expressed LTD comparable to the RVG group. Our data demonstrate that RVG expression facilitates both short- and long-term synaptic plasticity in the DG indicating that it may involve both pre- and postsynaptic mechanisms to alter synaptic function. Further studies are needed to elucidate the underlying mechanisms.

  相似文献   
264.
Autophagy-dependent cell death is a prominent mechanism that majorly contributes to homeostasis by maintaining the turnover of organelles under stressful conditions. Several viruses, including coronaviruses (CoVs), take advantage of cellular autophagy to facilitate their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-coronavirus (β-CoVs) that mediates its replication through a dependent or independent ATG5 pathway using specific double-membrane vesicles that can be considered as similar to autophagosomes. With due attention to several mutations in NSP6, a nonstructural protein with a positive regulatory effect on autophagosome formation, a potential correlation between SARS-CoV-2 pathogenesis mechanisms and autophagy can be expected. Certain medications, albeit limited in number, have been indicated to negatively regulate autophagy flux, potentially in a way similar to the inhibitory effect of β-CoVs on the process of autophagy. However, there is no conclusive evidence to support their direct antagonizing effect on CoVs. Off-target accumulation of a major fraction of FDA-approved autophagy modulating drugs may result in adverse effects. Therefore, medications that have modulatory effects on autophagy could be considered as potential lead compounds for the development of new treatments against this virus. This review discusses the role of autophagy/virophagy in controlling SARS-CoV-2, focusing on the potential therapeutic implications.  相似文献   
265.
266.
267.
268.
For different microbiological and pathological studies, it is often required to monitor the growth of bacteria in a cultured medium in the laboratory environment. UV‐VIS spectrophotometer is commonly used to estimate the growth of bacterial cell population by measuring the absorbance at 600 nm over a period of time. Colony‐forming unit (CFU) is another approach, which has been routinely performed to estimate the live bacterial cells on semisolid agar plates. Herein, we demonstrate an alternative yet highly reliable sensing platform on a smartphone using which growth kinetics of different bacteria can be reliably monitored. The performance of the proposed smartphone sensor has been compared with the data obtained from OD600 and CFU analysis. A good correlation of bacterial growth rates enumerated based on the proposed smartphone sensor, bench‐top spectrophotometer and CFU analysis have been observed under the experimental conditions.  相似文献   
269.
  相似文献   
270.
Systematic studies of cardiac structure-function relationships to date have been hindered by the intrinsic complexity and variability of in vivo and ex vivo model systems. Thus, we set out to develop a reproducible cell culture system that can accurately replicate the realistic microstructure of native cardiac tissues. Using cell micropatterning techniques, we aligned cultured cardiomyocytes at micro- and macroscopic spatial scales to follow local directions of cardiac fibers in murine ventricular cross sections, as measured by high-resolution diffusion tensor magnetic resonance imaging. To elucidate the roles of ventricular tissue microstructure in macroscopic impulse conduction, we optically mapped membrane potentials in micropatterned cardiac cultures with realistic tissue boundaries and natural cell orientation, cardiac cultures with realistic tissue boundaries but random cell orientation, and standard isotropic monolayers. At 2 Hz pacing, both microscopic changes in cell orientation and ventricular tissue boundaries independently and synergistically increased the spatial dispersion of conduction velocity, but not the action potential duration. The realistic variations in intramural microstructure created unique spatial signatures in micro- and macroscopic impulse propagation within ventricular cross-section cultures. This novel in vitro model system is expected to help bridge the existing gap between experimental structure-function studies in standard cardiac monolayers and intact heart tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号