首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   14篇
  国内免费   1篇
  322篇
  2024年   1篇
  2023年   3篇
  2022年   15篇
  2021年   13篇
  2020年   7篇
  2019年   12篇
  2018年   15篇
  2017年   8篇
  2016年   12篇
  2015年   14篇
  2014年   14篇
  2013年   24篇
  2012年   33篇
  2011年   29篇
  2010年   21篇
  2009年   12篇
  2008年   8篇
  2007年   11篇
  2006年   9篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有322条查询结果,搜索用时 0 毫秒
101.
Karyopherins: from nuclear-transport mediators to nuclear-function regulators   总被引:16,自引:0,他引:16  
The karyopherin beta (or importin beta) family comprises soluble transport factors that mediate the movement of proteins and RNAs between the nucleus and cytoplasm. Recent studies have extended the role of karyopherins to regulating assembly of the nuclear pore complex (NPC), assembly of the nuclear envelope, mitosis and replication. New data also address how karyopherins specifically recognize and transport many distinct cargoes and traverse the NPC. These data raise the possibility that, although there might be a universal mechanism for nuclear transport, specific interactions between karyopherins and components of the NPC might function to regulate differentially the ability of the different karyopherins to cross the NPC.  相似文献   
102.
Many tissue engineering applications require the remodeling of a degradable scaffold either in vitro or in situ. Although inefficient remodeling or failure to fully remodel the temporary matrix can result in a poor clinical outcome, very few investigations have examined in detail, the interaction of regenerative cells with temporary scaffoldings. In a recent series of investigations, randomly oriented collagen gels were directly implanted into human corneal pockets and followed for 24 months. The resulting remodeling response exhibited a high degree of variability which likely reflects differing regenerative/synthetic capacity across patients. Given this variability, we hypothesize that a disorganized, degradable provisional scaffold could be disruptive to a uniform, organized reconstruction of stromal matrix. In this investigation, two established corneal stroma tissue engineering culture systems (collagen scaffold‐based and scaffold‐free) were compared to determine if the presence of the disorganized collagen gel influenced matrix production and organizational control exerted by primary human corneal fibroblast cells (PHCFCs). PHCFCs were cultured on thin disorganized reconstituted collagen substrate (RCS—five donors: average age 34.4) or on a bare polycarbonate membrane (five donors: average age 32.4 controls). The organization and morphology of the two culture systems were compared over the long‐term at 4, 8, and 11/12 weeks. Construct thickness and extracellular matrix organization/alignment was tracked optically with bright field and differential interference contrast (DIC) microscopy. The details of cell/matrix morphology and cell/matrix interaction were examined with standard transmission, cuprolinic blue and quick‐freeze/deep‐etch electron microscopy. Both the scaffold‐free and the collagen‐based scaffold cultures produced organized arrays of collagen fibrils. However, at all time points, the amount of organized cell‐derived matrix in the scaffold‐based constructs was significantly lower than that produced by scaffold‐free constructs (controls). We also observed significant variability in the remodeling of RCS scaffold by PHCFCs. PHCFCs which penetrated the RCS scaffold did exert robust local control over secreted collagen but did not appear to globally reorganize the scaffold effectively in the time period of the study. Consistent with our hypothesis, the results demonstrate that the presence of the scaffold appears to interfere with the global organization of the cell‐derived matrix. The production of highly organized local matrix by fibroblasts which penetrated the scaffold suggests that there is a mechanism which operates close to the cell membrane capable of controlling fibril organization. Nonetheless, the local control of the collagen alignment produced by cells within the scaffold was not continuous and did not result in overall global organization of the construct. Using a disorganized scaffold as a guide to produce highly organized tissue has the potential to delay the production of useful matrix or prevent uniform remodeling. The results of this study may shed light on the recent attempts to use disorganized collagenous matrix as a temporary corneal replacement in vivo which led to a variable remodeling response. Biotechnol. Bioeng. 2012; 109: 2683–2698. © 2012 Wiley Periodicals, Inc.  相似文献   
103.
Assad JA 《Neuron》1999,22(4):642-644
  相似文献   
104.
Well-controlled studies of the structural and functional interactions between cardiomyocytes and other cells are essential for understanding heart pathophysiology and for the further development of safe and efficient cell therapies. We established a novel in vitro assay composed of a large number of individual micropatterned cell pairs with reproducible shape, size, and region of cell-cell contact. This assay was applied to quantify and compare the frequency of expression and distribution of electrical (connexin43) and mechanical (N-cadherin) coupling proteins in 5,000 cell pairs made of cardiomyocytes (CMs), cardiac fibroblasts (CFs), skeletal myoblasts (SKMs), and mesenchymal stem cells (MSCs). We found that for all cell pair types, side-side contacts between two cells formed 4.5-14.3 times more often than end-end contacts. Both connexin43 and N-cadherin were expressed in all homotypic CM pairs but in only 13.4-91.6% of pairs containing noncardiomyocytes, where expression was either junctional (at the site of cell-cell contact) or diffuse (inside the cytoplasm). CM expression was exclusively junctional in homotypic pairs but predominantly diffuse in heterotypic pairs. Noncardiomyocyte homotypic pairs exhibited diffuse expression 1.7-8.7 times more often than junctional expression, which was increased 2.6-4.4 times in heterotypic pairs. Junctional connexin43 and N-cadherin expression, respectively, were found in 38.6 +/- 7.3 and 39.6 +/- 6.2% of CM-MSC pairs, 21.9 +/- 5.0 and 13.6 +/- 1.9% of CM-SKM pairs, and in only 3.8-9.6% of CM-CF pairs. Measured frequencies of protein expression and distribution were stable for at least 4 days. Described studies in micropatterned cell pairs shed new light on cellular interactions relevant for cardiac function and cell therapies.  相似文献   
105.
One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear’s population.  相似文献   
106.
Understanding how proteins evolve to provide both exquisite specificity and proficient activity is a fundamental problem in biology that has implications for protein function prediction and protein engineering. To study this problem, we analyzed the evolution of structure and function in the o-succinylbenzoate synthase/N-acylamino acid racemase (OSBS/NAAAR) family, part of the mechanistically diverse enolase superfamily. Although all characterized members of the family catalyze the OSBS reaction, this family is extraordinarily divergent, with some members sharing <15% identity. In addition, a member of this family, Amycolatopsis OSBS/NAAAR, is promiscuous, catalyzing both dehydration and racemization. Although the OSBS/NAAAR family appears to have a single evolutionary origin, no sequence or structural motifs unique to this family could be identified; all residues conserved in the family are also found in enolase superfamily members that have different functions. Based on their species distribution, several uncharacterized proteins similar to Amycolatopsis OSBS/NAAAR appear to have been transmitted by lateral gene transfer. Like Amycolatopsis OSBS/NAAAR, these might have additional or alternative functions to OSBS because many are from organisms lacking the pathway in which OSBS is an intermediate. In addition to functional differences, the OSBS/NAAAR family exhibits surprising structural variations, including large differences in orientation between the two domains. These results offer several insights into protein evolution. First, orthologous proteins can exhibit significant structural variation, and specificity can be maintained with little conservation of ligand-contacting residues. Second, the discovery of a set of proteins similar to Amycolatopsis OSBS/NAAAR supports the hypothesis that new protein functions evolve through promiscuous intermediates. Finally, a combination of evolutionary, structural, and sequence analyses identified characteristics that might prime proteins, such as Amycolatopsis OSBS/NAAAR, for the evolution of new activities.  相似文献   
107.
108.

Rabies virus (RABV) is a neurotropic virus exclusively infecting neurons in the central nervous system. RABV encodes five proteins. Among them, the viral glycoprotein (RVG) plays a key role in viral entry into neurons and rabies pathogenesis. It was shown that the nature of the C-terminus of the RABV G protein, which possesses a PDZ-binding motif (PBM), modulates the virulence of the RABV strain. The neuronal protein partners recruited by this PBM may alter host cell function. This study was conducted to investigate the effect of RVG on synaptic function in the hippocampal dentate gyrus (DG) of rat. Two μl (108 T.U./ml) of the lentiviral vector containing RVG gene was injected into the DG of rat hippocampus. After 2 weeks, the rat’s brain was cross-sectioned and RVG-expressing cells were detected by fluorescent microscopy. Hippocampal synaptic activity of the infected rats was then examined by recording the local field potentials from DG after stimulation of the perforant pathway. Short-term synaptic plasticity was also assessed by double pulse stimulation. Expression of RVG in DG increased long-term potentiation population spikes (LTP-PS), whereas no facilitation of LTP-PS was found in neurons expressing δRVG (deleted PBM). Furthermore, RVG and δRVG strengthened paired-pulse facilitation. Heterosynaptic long-term depression (LTD) in the DG was significantly blocked in RVG-expressing group compared to the control group. This blockade was dependent to PBM motif as rats expressing δRVG in the DG-expressed LTD comparable to the RVG group. Our data demonstrate that RVG expression facilitates both short- and long-term synaptic plasticity in the DG indicating that it may involve both pre- and postsynaptic mechanisms to alter synaptic function. Further studies are needed to elucidate the underlying mechanisms.

  相似文献   
109.
The human neurological disorder hyperekplexia is frequently caused by recessive and dominant mutations of the glycine receptor α1 subunit gene, GLRA1 . Dominant forms are mostly attributed to amino acid substitutions within the ion pore or adjacent loops, resulting in altered channel properties. Here, the biogenesis of glycine receptor α1 subunit mutants underlying recessive forms of hyperekplexia was analyzed following recombinant expression in HEK293 cells. The α1 mutant S231R resulted in a decrease of surface integrated protein, consistent with reduced maximal current values. Decreased maximal currents shown for the recessive α1 mutant I244N were associated with protein instability, rather than decreased surface integration. The recessive mutants R252H and R392H encode exchanges of arginine residues delineating the intracellular faces of transmembrane domains. After expression, the mutant R252H was virtually absent from the cell surface, consistent with non-functionality and the importance of the positive charge for membrane integration. Surface expression of R392H was highly reduced, resulting in residual chloride conductance. Independent of the site of the mutation within the α1 polypeptide, metabolic radiolabelling and pulse chase studies revealed a shorter half-life of the full-length α1 protein for all recessive mutants as compared to the wild-type. Treatment with the proteasome blocker, lactacystin, significantly increased the accumulation of α1 mutants in intracellular membranes. These observations indicated that the recessive α1 mutants are recognized by the endoplasmatic reticulum control system, and degraded via the proteasome pathway. Thus, the lack of glycinergic inhibition associated with recessive hyperekplexia may be attributed to sequestration of mutant subunits within the endoplasmatic reticulum quality control system.  相似文献   
110.
Blood flow restoration to ischemic tissue is affected by various risk factors. The aim of this study was to examine gender effects on arteriogenesis and angiogenesis in a mouse ischemic hindlimb model. C57BL/6J mice were subjected to unilateral hindlimb ischemia. Flow recovery was less and hindlimb use impairment was greater in females. No gender difference in vessel number was found at baseline, although 7 days postsurgery females had fewer α-smooth muscle actin-positive vessels in the midpoint of the adductor region. Females had higher hindlimb vascular resistance, were less responsive to vasodilators, and were more sensitive to vasoconstrictors postligation. Western blotting showed that females had higher baseline levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in the calf, while 7 days postligation males had higher levels of VEGF, eNOS, and phosphorylated vasodilator stimulated phosphoprotein. Females had less angiogenesis in a Matrigel plug assay and less endothelial cell proliferation in vitro. Females have impaired recovery of flow, a finding presumably caused by multiple factors including decreased collateral remodeling, less angiogenesis, impaired vasodilator response, and increased vasoconstrictor activity; our results also suggest the possibility that new collateral formation, from capillaries, is impaired in females.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号