全文获取类型
收费全文 | 1978篇 |
免费 | 134篇 |
专业分类
2112篇 |
出版年
2023年 | 15篇 |
2022年 | 29篇 |
2021年 | 42篇 |
2020年 | 26篇 |
2019年 | 35篇 |
2018年 | 38篇 |
2017年 | 32篇 |
2016年 | 61篇 |
2015年 | 102篇 |
2014年 | 107篇 |
2013年 | 120篇 |
2012年 | 142篇 |
2011年 | 135篇 |
2010年 | 80篇 |
2009年 | 86篇 |
2008年 | 117篇 |
2007年 | 112篇 |
2006年 | 98篇 |
2005年 | 93篇 |
2004年 | 83篇 |
2003年 | 80篇 |
2002年 | 76篇 |
2001年 | 28篇 |
2000年 | 19篇 |
1999年 | 24篇 |
1998年 | 25篇 |
1997年 | 13篇 |
1996年 | 11篇 |
1995年 | 11篇 |
1994年 | 16篇 |
1993年 | 13篇 |
1992年 | 17篇 |
1990年 | 15篇 |
1989年 | 16篇 |
1988年 | 9篇 |
1987年 | 5篇 |
1986年 | 9篇 |
1985年 | 14篇 |
1984年 | 16篇 |
1982年 | 7篇 |
1981年 | 8篇 |
1980年 | 5篇 |
1979年 | 6篇 |
1978年 | 9篇 |
1977年 | 10篇 |
1976年 | 5篇 |
1970年 | 6篇 |
1965年 | 5篇 |
1964年 | 8篇 |
1955年 | 5篇 |
排序方式: 共有2112条查询结果,搜索用时 0 毫秒
61.
Trade-offs in resource selection by central-place foragers are driven by the need to balance the benefits of selecting resources against the costs of travel from the central place. For group-territorial central-place foraging birds, trade-offs in resource selection are likely to be complicated by a competitive advantage for larger groups at high group density that may limit accessibility of high-quality distant resources to small groups. We used the group-territorial, central-place foraging Red-cockaded Woodpecker Leuconotopicus borealis (RCW) as a case study to test predictions that increases in group density lead to differences in foraging distances and resource selection for groups of different sizes. We used GPS tracking and LiDAR-derived habitat data to model effects of group size on foraging distances and selection for high-quality pines (≥ 35.6 cm diameter at breast height (dbh)) and lower quality pines (25.4–35.6 cm dbh) by RCW groups across low (n = 14), moderate (n = 10) and high group density (n = 10) conditions. At low and moderate group density, all RCW groups selected distant high-quality pines in addition to those near the central place because competition for resources was low. In contrast, at high group density, larger groups travelled further to select high-quality pines, whereas smaller groups selected high-quality pines only when they were close to the central place and, conversely, were more likely to select lower quality pines at greater distances from the central place. Selection for high-quality pines only when close to the cavity tree cluster at high group density is important to long-term fitness of small RCW groups because it allows them to maximize benefits from both territorial defence and selecting high-quality resources while minimizing costs of competition. These relationships suggest that intraspecific competition at high group density entails substantive costs to smaller groups of territorial central-place foragers by limiting accessibility of distant high-quality foraging resources. 相似文献
62.
Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme 下载免费PDF全文
Krasovska MV Sefcikova J Réblová K Schneider B Walter NG Sponer J 《Biophysical journal》2006,91(2):626-638
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized. 相似文献
63.
For studying the microbiota of four Danish surface-ripened cheeses produced at three farmhouses and one industrial dairy, both a culture-dependent and culture-independent approach were used. After dereplication of the initial set of 433 isolates by (GTG)5-PCR fingerprinting, 217 bacterial and 25 yeast isolates were identified by sequencing of the 16S rRNA gene or the D1/D2 domain of the 26S rRNA gene, respectively. At the end of ripening, the cheese core microbiota of the farmhouse cheeses consisted of the mesophilic lactic acid bacteria (LAB) starter cultures Lactococcus lactis subsp. lactis and Leuconostoc mesenteorides as well as non-starter LAB including different Lactobacillus spp. The cheese from the industrial dairy was almost exclusively dominated by Lb. paracasei. The surface bacterial microbiota of all four cheeses were dominated by Corynebacterium spp. and/or Brachybacterium spp. Brevibacterium spp. was found to be subdominant compared to other bacteria on the farmhouse cheeses, and no Brevibacterium spp. was found on the cheese from the industrial dairy, even though B. linens was used as surface-ripening culture. Moreover, Gram-negative bacteria identified as Alcalignes faecalis and Proteus vulgaris were found on one of the farmhouse cheeses. The surface yeast microbiota consisted primarily of one dominating species for each cheese. For the farmhouse cheeses, the dominant yeast species were Yarrowia lipolytica, Geotrichum spp. and Debaryomyces hansenii, respectively, and for the cheese from the industrial dairy, D. hansenii was the dominant yeast species. Additionally, denaturing gradient gel electrophoresis (DGGE) analysis revealed that Streptococcus thermophilus was present in the farmhouse raw milk cheese analysed in this study. Furthermore, DGGE bands corresponding to Vagococcus carniphilus, Psychrobacter spp. and Lb. curvatus on the cheese surfaces indicated that these bacterial species may play a role in cheese ripening. 相似文献
64.
Lovisa Wennerström Linda Laikre Nils Ryman Fred M. Utter Nurul Izza Ab Ghani Carl André Jacquelin DeFaveri Daniel Johansson Lena Kautsky Juha Merilä Natalia Mikhailova Ricardo Pereyra Annica Sandström Amber G. F. Teacher Roman Wenne Anti Vasemägi Małgorzata Zbawicka Kerstin Johannesson Craig R. Primmer 《Biodiversity and Conservation》2013,22(13-14):3045-3065
Information on spatial and temporal patterns of genetic diversity is a prerequisite to understanding the demography of populations, and is fundamental to successful management and conservation of species. In the sea, it has been observed that oceanographic and other physical forces can constitute barriers to gene flow that may result in similar population genetic structures in different species. Such similarities among species would greatly simplify management of genetic biodiversity. Here, we tested for shared genetic patterns in a complex marine area, the Baltic Sea. We assessed spatial patterns of intraspecific genetic diversity and differentiation in seven ecologically important species of the Baltic ecosystem—Atlantic herring (Clupea harengus), northern pike (Esox lucius), European whitefish (Coregonus lavaretus), three-spined stickleback (Gasterosteus aculeatus), nine-spined stickleback (Pungitius pungitius), blue mussel (Mytilus spp.), and bladderwrack (Fucus vesiculosus). We used nuclear genetic data of putatively neutral microsatellite and SNP loci from samples collected from seven regions throughout the Baltic Sea, and reference samples from North Atlantic areas. Overall, patterns of genetic diversity and differentiation among sampling regions were unique for each species, although all six species with Atlantic samples indicated strong resistence to Atlantic-Baltic gene-flow. Major genetic barriers were not shared among species within the Baltic Sea; most species show genetic heterogeneity, but significant isolation by distance was only detected in pike and whitefish. These species-specific patterns of genetic structure preclude generalizations and emphasize the need to undertake genetic surveys for species separately, and to design management plans taking into consideration the specific structures of each species. 相似文献
65.
Constantí Stefanescu Ferran Páramo Susanne Åkesson Marta Alarcón Anna Ávila Tom Brereton Jofre Carnicer Louis F. Cassar Richard Fox Janne Heliölä Jane K. Hill Norbert Hirneisen Nils Kjellén Elisabeth Kühn Mikko Kuussaari Matti Leskinen Felix Liechti Martin Musche Eugenie C. Regan Don R. Reynolds David B. Roy Nils Ryrholm Heiko Schmaljohann Josef Settele Chris D. Thomas Chris van Swaay Jason W. Chapman 《Ecography》2013,36(4):474-486
Long‐range, seasonal migration is a widespread phenomenon among insects, allowing them to track and exploit abundant but ephemeral resources over vast geographical areas. However, the basic patterns of how species shift across multiple locations and seasons are unknown in most cases, even though migrant species comprise an important component of the temperate‐zone biota. The painted lady butterfly Vanessa cardui is such an example; a cosmopolitan continuously‐brooded species which migrates each year between Africa and Europe, sometimes in enormous numbers. The migration of 2009 was one of the most impressive recorded, and thousands of observations were collected through citizen science programmes and systematic entomological surveys, such as high altitude insect‐monitoring radar and ground‐based butterfly monitoring schemes. Here we use V. cardui as a model species to better understand insect migration in the Western Palaearctic, and we capitalise on the complementary data sources available for this iconic butterfly. The migratory cycle in this species involves six generations, encompassing a latitudinal shift of thousands of kilometres (up to 60 degrees of latitude). The cycle comprises an annual poleward advance of the populations in spring followed by an equatorward return movement in autumn, with returning individuals potentially flying thousands of kilometres. We show that many long‐distance migrants take advantage of favourable winds, moving downwind at high elevation (from some tens of metres from the ground to altitudes over 1000 m), pointing at strong similarities in the flight strategies used by V. cardui and other migrant Lepidoptera. Our results reveal the highly successful strategy that has evolved in these insects, and provide a useful framework for a better understanding of long‐distance seasonal migration in the temperate regions worldwide. 相似文献
66.
67.
Transgenic tobacco (Nicotiana tabacum L.) plants with decreased and increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT)
were used to study the control the TPT exerts on the flux of starch and sucrose biosynthesis, as well as CO2 assimilation, respiration and photosynthetic electron transport. For this purpose, tobacco lines with an antisense repression
of the endogenous TPT (αTPT) and tobacco lines overexpressing a TPT gene from Flaveria trinervia (FtTPT) were used. In ambient CO2, there was no or little effect of altered TPT transport activities on either rates of photosynthetic electron transport and/or
CO2 assimilation. However, in elevated CO2 (1500 μl · l−1) and low O2 (2%) the TPT exerted strong control on the rate of CO2 assimilation (control coefficient for the wild type; CJA
TPT=0.30) in saturating light. Similarly, the incorporation of 14C into starch in high CO2 was increased in tobacco plants with decreased TPT activity, but was reduced in plants overexpressing the TPT from F. trinervia. Thus, the TPT exerted negative control on the rate of starch biosynthesis with a CJStarch
TPT=−0.19 in the wild type estimated from a hyperbolic curve fitted to the data points. This was less than the positive control
strength on the rate of sucrose biosynthesis (CJSuc
TPT=0.35 in the wild type). Theoretically, the positive control exerted on sucrose biosynthesis should be numerically identical
to the negative control on starch biosynthesis unless additional metabolic pathways are affected. The rate of dark respiration
showed some correlation with the TPT activity in that it increased in FtTPT overexpressors, but decreased in αTPT plants with
an apparent control coefficient of CJRes
TPT=0.24. If the control on sucrose biosynthesis is referred to as “gain of carbon” (positive control) and the control on starch
biosynthesis as well as dark respiration as a “loss of carbon” (negative control) for sucrose biosynthesis and subsequent
export, the sum of the control coefficients on dark respiration and starch biosynthesis would be numerically similar to the
control coefficient on the rate of sucrose biosynthesis. There was also some control on the rate of photosynthetic electron
transport, but only at high light and in elevated CO2 combined with low O2. The control coefficient for the rate of photosynthetic electron transport was CJETR
TPT=0.16 in the wild type. Control coefficients were also calculated for plants with elevated and lowered TPT activity. Furthermore,
the extent to which starch degradation/glucose utilisation compensates for the lack of triose phosphate export was assessed.
The TPT also exerted control on metabolite contents in air.
Received: 26 March 1999 / Accepted: 21 August 1999 相似文献
68.
69.
Ronald K. Chesser Nils Ryman 《Evolution; international journal of organic evolution》1986,40(3):616-624
A generalized expression for coefficients of consanguinity and relationship with previous inbreeding is presented to examine various breeding strategies in subdivided populations. Conditions that would favor inbreeding are developed for: 1) nonfamilial inbreeding within a deme versus outbreeding; 2) altruistic inbreeding by females versus outbreeding; 3) sib-mating versus outbreeding; and 4) sib-mating versus nonfamilial breeding within a deme. Inbreeding behavior is advantageous under certain conditions but depends on the types of mating, the previous breeding history of the deme, the rate of accumulation of inbreeding depression, and the cost of migration. In polygynous mating systems it is genetically more advantageous for males to migrate, because female emigration may 1) leave a related male with no mate or one fewer mate, or 2) force both male and female to risk the cost of migration. Nonfamilial breeding is always a better strategy than sib-mating given previous inbreeding within the deme. Even when the cost of migration is zero, inbreeding is favored if the coefficient of relationship among relatives is greater than the ratio of the probabilities of offspring inviability to offspring viability. Although high inbreeding coefficients are probably not adaptive unless the costs of migration are great or inbreeding depression constants are small, low levels of inbreeding are advantageous in many situations. Therefore, increased genetic representation by way of inbreeding and inclusive fitness is a major component of the evolutionary process. 相似文献
70.
Majid Haddad Momeni Christina M. Payne Henrik Hansson Nils Egil Mikkelsen Jesper Svedberg ?ke Engstr?m Mats Sandgren Gregg T. Beckham Jerry St?hlberg 《The Journal of biological chemistry》2013,288(8):5861-5872
Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the −7 to −4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases. 相似文献