首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2049篇
  免费   140篇
  2023年   11篇
  2022年   26篇
  2021年   42篇
  2020年   27篇
  2019年   35篇
  2018年   38篇
  2017年   33篇
  2016年   61篇
  2015年   104篇
  2014年   108篇
  2013年   121篇
  2012年   142篇
  2011年   138篇
  2010年   81篇
  2009年   90篇
  2008年   118篇
  2007年   116篇
  2006年   100篇
  2005年   94篇
  2004年   85篇
  2003年   83篇
  2002年   77篇
  2001年   30篇
  2000年   23篇
  1999年   28篇
  1998年   25篇
  1997年   14篇
  1996年   12篇
  1995年   12篇
  1994年   14篇
  1993年   16篇
  1992年   17篇
  1990年   18篇
  1989年   18篇
  1988年   14篇
  1987年   7篇
  1986年   11篇
  1985年   19篇
  1984年   19篇
  1982年   7篇
  1981年   9篇
  1980年   7篇
  1979年   7篇
  1978年   11篇
  1977年   12篇
  1976年   6篇
  1970年   6篇
  1965年   5篇
  1964年   8篇
  1955年   5篇
排序方式: 共有2189条查询结果,搜索用时 875 毫秒
101.
We have characterized the biochemical association of two DNA damage-dependent enzymes, poly(ADP-ribose) polymerase-1 (PARP-1) [EC 2.4.2.30] and DNA polymerase beta (pol beta) [2.7.7.7]. We reproducibly observed that pol beta is an efficient covalent target for ADP-ribose polymers under standard conditions of enzymatically catalyzed ADP-ribosylation of betaNAD+ as a substrate. The efficiency of poly(ADP-ribosyl)ation increased as a function of the pol beta and betaNAD+ concentrations. To further characterize the molecular interactions between these two unique polymerases, we also subjected human recombinant PARP-1 to peptide-specific enzymatic degradation with either caspase-3 or caspase-7 in vitro. This proteolytic treatment, commonly referred to as 'a hallmark of apoptosis', generated the two physiologically relevant peptide fragments of PARP-1, e.g., a 24-kDa amino-terminus and an 89-kDa carboxy-terminal domain. Interestingly, co-incubation of the two peptide fragments of PARP-1 with full-length pol beta resulted in their domain-specific molecular association as determined by co-immunoprecipitation and reciprocal immunoblotting. Therefore, our data strongly suggest that, once PARP-1 is proteolyzed by either caspase-3 or caspase-7 during cell death, the specific association of its apoptotic fragments with DNA repair enzymes, such as pol beta, may serve a regulatory molecular role in the execution phase of apoptosis.  相似文献   
102.
The His-tagged lipase BTL2 from Bacillus thermocatenulatus was expressed in Escherichia coli and purified to homogeneity by a simple, one-step purification protocol using immobilized metal affinity chromatography. The success of protein separation and purification was pH-dependent and increased with decreasing pH. The purified BTL2 lipase showed a strong tendency to aggregate upon concentration, which prevented a reproducible crystallization. Aggregation studies using dynamic light-scattering (DLS) analysis were performed to improve the purification and concentration of BTL2 lipase. Different chemical classes of additives were tested to manipulate the aggregation behaviour of BTL2 lipase with the aim of obtaining a monodisperse sample to use for crystallization. For the process of concentration of BTL2 lipase in monomeric form, the alcohol 2-propanol and the ionic detergent dodecyl dimethylamine-N-oxide (LDAO) were found to be necessary. For the concentrated lipase, the availability of 5% 2-propanol was sufficient to hold the lipase in monomeric form and no additional detergent was needed.  相似文献   
103.
104.
Despite the potentially strong effect of wind on bird orientation, our understanding of how wind drift affects migrating birds is still very limited. Using data from satellite-based radio telemetry, we analysed the effect of changing winds on the variation of the track direction of individual birds. We studied adults and juveniles of two raptor species, osprey Pandion haliaetus and honey buzzard Pernis apivorus, on autumn migration between North Europe and Africa, and demonstrate an important difference between the age categories of both species in the extent of wind drift. For juveniles, side- and following-wind components affected the rates of movement perpendicular to and along the mean direction, respectively, to a similar degree, suggesting full wind drift. By contrast, for adults the rate of crosswind displacement was significantly smaller than the effect of wind on forward movement, showing much reduced wind drift (29%). This indicates that adults have acquired a more sophisticated orientation system, permitting detection of and compensation for wind drift, than juveniles. These drift effects are likely to reduce the ability of juveniles to locate species-specific wintering areas in case of rapid climatic wind change.  相似文献   
105.
Electrostatic interactions play a complex role in stabilizing proteins. Here, we present a rigorous thermodynamic analysis of the contribution of individual Glu and His residues to the relative pH-dependent stability of the designed disulfide-linked leucine zipper AB(SS). The contribution of an ionized side-chain to the pH-dependent stability is related to the shift of the pK(a) induced by folding of the coiled coil structure. pK(a)(F) values of ten Glu and two His side-chains in folded AB(SS) and the corresponding pK(a)(U) values in unfolded peptides with partial sequences of AB(SS) were determined by 1H NMR spectroscopy: of four Glu residues not involved in ion pairing, two are destabilizing (-5.6 kJ mol(-1)) and two are interacting with the positive alpha-helix dipoles and are thus stabilizing (+3.8 kJ mol(-1)) in charged form. The two His residues positioned in the C-terminal moiety of AB(SS) interact with the negative alpha-helix dipoles resulting in net stabilization of the coiled coil conformation carrying charged His (-2.6 kJ mol(-1)). Of the six Glu residues involved in inter-helical salt bridges, three are destabilizing and three are stabilizing in charged form, the net contribution of salt-bridged Glu side-chains being destabilizing (-1.1 kJ mol(-1)). The sum of the individual contributions of protonated Glu and His to the higher stability of AB(SS) at acidic pH (-5.4 kJ mol(-1)) agrees with the difference in stability determined by thermal unfolding at pH 8 and pH 2 (-5.3 kJ mol(-1)). To confirm salt bridge formation, the positive charge of the basic partner residue of one stabilizing and one destabilizing Glu was removed by isosteric mutations (Lys-->norleucine, Arg-->norvaline). Both mutations destabilize the coiled coil conformation at neutral pH and increase the pK(a) of the formerly ion-paired Glu side-chain, verifying the formation of a salt bridge even in the case where a charged side-chain is destabilizing. Because removing charges by a double mutation cycle mainly discloses the immediate charge-charge effect, mutational analysis tends to overestimate the overall energetic contribution of salt bridges to protein stability.  相似文献   
106.
In this study, we show that costimulation required for mucosal IgA responses is strikingly different from that needed for systemic responses, including serum IgA. Following oral immunization with cholera toxin (CT) adjuvant we found that whereas CTLA4-H1 transgenic mice largely failed to respond, CD28-/- mice developed near normal gut mucosal IgA responses but poor serum Ab responses. The local IgA response was functional in that strong antitoxic protection developed in CT-immunized CD28-/- mice. This was in spite of the fact that no germinal centers (GC) were observed in the Peyer's patches, spleen, or other peripheral lymph nodes. Moreover, significant somatic hypermutation was found in isolated IgA plasma cells from gut lamina propria of CD28-/- mice. Thus, differentiation to functional gut mucosal IgA responses against T cell-dependent Ags does not require signaling through CD28 and can be independent of GC formations and isotype-switching in Peyer's patches. By contrast, serum IgA responses, similar to IgG-responses, are dependent on GC and CD28. However, both local and systemic responses are impaired in CTLA4-Hgamma1 transgenic mice, indicating that mucosal IgA responses are dependent on the B7-family ligands, but require signaling via CTLA4 or more likely a third related receptor. Therefore, T-B cell interactions leading to mucosal as opposed to serum IgA responses are uniquely regulated and appear to represent separate events. Although CT is known to strongly up-regulate B7-molecules, we have demonstrated that it acts as a potent mucosal adjuvant in the absence of CD28, suggesting that alternative costimulatory pathways are involved.  相似文献   
107.
In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions between these proteins. Multicopy extragenic suppressors were selected in strains carrying deletions in FAA1 and FAA4 or FAA1 and FAT1. Each strain is unable to grow under synthetic lethal conditions when exogenous long-chain fatty acids are required, and neither strain accumulates the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) indicating a fatty acid transport defect. By using these phenotypes as selective screens, plasmids were identified encoding FAA1, FAT1, and FAA4 in the faa1Delta faa4Delta strain and encoding FAA1 and FAT1 in the faa1Delta fat1Delta strain. Multicopy FAA4 could not suppress the growth defect in the faa1Delta fat1Delta strain indicating some essential functions of Fat1p cannot be performed by Faa4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Delta faa1Delta and faa1Delta faa4Delta strains, respectively, indicating Faa1p and Fat1p play distinct roles in the fatty acid import process. When expressed from a 2-mu plasmid, Fat1p contributes significant oleoyl-CoA synthetase activity, which indicates vectorial esterification and metabolic trapping are the driving forces behind import. Evidence of a physical interaction between Fat1p and FACS was provided using three independent biochemical approaches. First, a C-terminal peptide of Fat1p deficient in fatty acid transport exerted a dominant negative effect against long-chain acyl-CoA synthetase activity. Second, protein fusions employing Faa1p as bait and portions of Fat1p as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and Faa1p or Faa4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which consists of Fat1p and Faa1p or Faa4p.  相似文献   
108.
Small glutamine-rich tetratricopeptide repeat-containing protein (SGT) is a ubiquitously expressed cochaperone of heat shock cognate protein of 70 kDa (Hsc70). SGT binds to the C terminus of Hsc70, a site used by several tetratricopeptide repeat-containing binding partners to recruit Hsc70 into complexes of diverse function. We describe here an isoform of SGT with 60% amino acid sequence identity that we name betaSGT. In contrast to the previously published alphaSGT, betaSGT is almost exclusively expressed in brain. Both isoforms of SGT possess similar binding properties toward Hsc70 and cysteine string protein, a synaptic vesicle-associated J-domain-containing protein. In addition, SGTs oligomerize without preferences among isoforms. The distribution of protein binding motifs on SGTs reveals a modular structure. The N-terminal domains mediate oligomerization. Binding to Hsc70 is impaired by mutations of basic residues within the central tetratricopeptide repeat domain of betaSGT, indicating a two-carboxylate clamp as the binding mode. The tetratricopeptide repeats are also necessary for binding to the cysteine string protein. However, this binding mode is distinct from the two-carboxylate clamp that is involved in Hsc70 binding. The C-terminal regions of SGTs might constitute independent protein interaction domains. We conclude that betaSGT is likely to cooperate with alphaSGT as co-chaperone of Hsc70 in the brain. The modular structure of SGTs allows them to recruit client proteins to Hsc70 and to direct the resulting complex toward downstream proteins that take over the respective client proteins.  相似文献   
109.
Ca2+-dependent activator protein for secretion (CAPS) 1 is an essential cytosolic component of the protein machinery involved in large dense-core vesicle (LDCV) exocytosis and in the secretion of a subset of neurotransmitters. In the present study, we report the identification, cloning, and comparative characterization of a second mammalian CAPS isoform, CAPS2. The structure of CAPS2 and its function in LDCV exocytosis from PC12 cells are very similar to those of CAPS1. Both isoforms are strongly expressed in neuroendocrine cells and in the brain. In subcellular fractions of the brain, both CAPS isoforms are enriched in synaptic cytosol fractions and also present on vesicular fractions. In contrast to CAPS1, which is expressed almost exclusively in brain and neuroendocrine tissues, CAPS2 is also expressed in lung, liver, and testis. Within the brain, CAPS2 expression seems to be restricted to certain brain regions and cell populations, whereas CAPS1 expression is strong in all neurons. During development, CAPS2 expression is constant between embryonic day 10 and postnatal day 60, whereas CAPS1 expression is very low before birth and increases after postnatal day 0 to reach a plateau at postnatal day 21. Light microscopic data indicate that both CAPS isoforms are specifically enriched in synaptic terminals. Ultrastructural analyses show that CAPS1 is specifically localized to glutamatergic nerve terminals. We conclude that at the functional level, CAPS2 is largely redundant with CAPS1. Differences in the spatial and temporal expression patterns of the two CAPS isoforms most likely reflect as yet unidentified subtle functional differences required in particular cell types or during a particular developmental period. The abundance of CAPS proteins in synaptic terminals indicates that they may also be important for neuronal functions that are not exclusively related to LDCV exocytosis.  相似文献   
110.
The preprotein translocase of the outer mitochondrial membrane (TOM complex) contains one essential subunit, the channel Tom40. The assembly pathway of the precursor of Tom40 involves the TOM complex and the sorting and assembly machinery (SAM complex) with the non-essential subunit Mas37. We have identified Sam50, the second essential protein of the mitochondrial outer membrane. Sam50 contains a beta-barrel domain conserved from bacteria to man and is a subunit of the SAM complex. Yeast mutants of Sam50 are defective in the assembly pathways of Tom40 and the abundant outer membrane protein porin, while the import of matrix proteins is not affected. Thus the protein sorting and assembly machinery of the mitochondrial outer membrane involves an essential, conserved protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号