首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1968篇
  免费   132篇
  2023年   11篇
  2022年   24篇
  2021年   41篇
  2020年   26篇
  2019年   35篇
  2018年   38篇
  2017年   32篇
  2016年   61篇
  2015年   101篇
  2014年   107篇
  2013年   120篇
  2012年   142篇
  2011年   135篇
  2010年   80篇
  2009年   86篇
  2008年   117篇
  2007年   111篇
  2006年   98篇
  2005年   93篇
  2004年   80篇
  2003年   80篇
  2002年   75篇
  2001年   28篇
  2000年   20篇
  1999年   25篇
  1998年   25篇
  1997年   13篇
  1996年   11篇
  1995年   11篇
  1994年   14篇
  1993年   13篇
  1992年   18篇
  1990年   18篇
  1989年   16篇
  1988年   9篇
  1987年   6篇
  1986年   8篇
  1985年   14篇
  1984年   16篇
  1982年   7篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1978年   9篇
  1977年   10篇
  1976年   5篇
  1970年   6篇
  1965年   5篇
  1964年   8篇
  1955年   5篇
排序方式: 共有2100条查询结果,搜索用时 390 毫秒
991.
Neurexins (NXs) and neuroligins (NLs) are transsynaptically interacting cell adhesion proteins that play a key role in the formation, maturation, activity-dependent validation, and maintenance of synapses. As complex alternative splicing processes in nerve cells generate a large number of NX and NLs variants, it has been proposed that a combinatorial interaction code generated by these variants may determine synapse identity and network connectivity during brain development. The functional importance of NXs and NLs is exemplified by the fact that mutations in NX and NL genes are associated with several neuropsychiatric disorders, most notably with autism. Accordingly, major research efforts have focused on the molecular mechanisms by which NXs and NLs operate at synapses. In this review, we summarize recent progress in this field and discuss emerging topics, such as the role of alternative interaction partners of NXs and NLs in synapse formation and function, and their relevance for synaptic plasticity in the mature brain. The novel findings highlight the fundamental importance of NX-NL interactions in a wide range of synaptic functions.  相似文献   
992.
Intergenic sequences evolve rapidly in plant genomes through a process known as genomic turnover. To investigate the influence of DNA transposons on genomic turnover, we compared 1 Mbp of orthologous genomic sequences from Brachypodium distachyon and Brachypodium sylvaticum. We found that B. distachyon and B. sylvaticum diverged approximately 1.7-2.0 million years ago. Of a total of 219 genes identified on the analyzed sequences, 211 were colinear. However, only 24 transposable elements of a total of 451 were orthologous (i.e. inserted in the common ancestor). We characterized in detail 59 insertions and 60 excisions of DNA transposons in one or other species, which altered 17% of the intergenic space. The DNA transposon excision sites showed complex and highly diagnostic sequence motifs for double-strand break (DSB) repair. DNA transposon excisions can lead to extensive deletions of hundreds of base pairs of flanking sequence if the DSB is repaired by 'single-strand annealing', or insertions of up to several hundred base pairs of 'filler DNA' if the DSB is repaired by 'synthesis-dependent strand annealing'. In some cases, DSBs were repaired by a combination of both methods. We present a model for the evolution of intergenic sequences in which repair of DSBs upon DNA transposon excision is a major factor in the rapid turnover and erosion of intergenic sequences.  相似文献   
993.

Background

The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation.

Methodology/Principal Findings

An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds'' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models.

Conclusions/Significance

The study identified a new set of ecological determinants related to river networks, migratory birds'' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and duck-rice cultivation interacted ecology are not significant determinants for Bangladesh. These findings will refine current understanding of the HPAI-H5N1 epidemiology in Bangladesh.  相似文献   
994.

Background

Amyotrophic lateral sclerosis (ALS) is a fatal disorder of the motor neuron system with poor prognosis and marginal therapeutic options. Current clinical diagnostic criteria are based on electrophysiological examination and exclusion of other ALS-mimicking conditions. Neuroprotective treatments are, however, most promising in early disease stages. Identification of disease-specific CSF biomarkers and associated biochemical pathways is therefore most relevant to monitor disease progression, response to neuroprotective agents and to enable early inclusion of patients into clinical trials.

Methods and Findings

CSF from 35 patients with ALS diagnosed according to the revised El Escorial criteria and 23 age-matched controls was processed using paramagnetic bead chromatography for protein isolation and subsequently analyzed by MALDI-TOF mass spectrometry. CSF protein profiles were integrated into a Random Forest model constructed from 153 mass peaks. After reducing this peak set to the top 25%, a classifier was built which enabled prediction of ALS with high accuracy, sensitivity and specificity. Further analysis of the identified peptides resulted in a panel of five highly sensitive ALS biomarkers. Upregulation of secreted phosphoprotein 1 in ALS-CSF samples was confirmed by univariate analysis of ELISA and mass spectrometry data. Further quantitative validation of the five biomarkers was achieved in an 80-plex Multiple Reaction Monitoring mass spectrometry assay.

Conclusions

ALS classification based on the CSF biomarker panel proposed in this study could become a valuable predictive tool for early clinical risk stratification. Of the numerous CSF proteins identified, many have putative roles in ALS-related metabolic processes, particularly in chromogranin-mediated secretion signaling pathways. While a stand-alone clinical application of this classifier will only be possible after further validation and a multicenter trial, it could be readily used to complement current ALS diagnostics and might also provide new insights into the pathomechanisms of this disease in the future.  相似文献   
995.
Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ∼200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken.  相似文献   
996.
997.
Neurotransmitter release is triggered by membrane depolarization, Ca(2+) influx and Ca(2+) sensing by the release machinery, causing synaptic vesicle (SV) fusion with the plasma membrane. Interlinked is a complex membrane cycle in which vesicles are tethered to the release site, primed, fused and recycled. As many of these processes are Ca(2+) dependent and simultaneously occurring, it is difficult to dissect them experimentally. This problem can be partially circumvented by controlling synaptic Ca(2+) concentrations via UV photolysis of caged Ca(2+). We developed a culture protocol for Ca(2+) uncaging in small synapses on the basis of the generation of small glia cell islands with single neurons on top, which are sufficiently small to be covered with a UV-light flash. Neurons are loaded with the photolabile Ca(2+)-chelator nitrophenyl-EGTA and Ca(2+) indicators, and a UV flash is used to trigger Ca(2+)-uncaging and SV fusion. The protocol takes three weeks to complete and provides unprecedented insights into the mechanisms of transmitter release.  相似文献   
998.
999.
Labeling of peptide nucleic acids (PNA) with metallocene complexes is explored herein for the modulation of the analytical characteristics, as well as biological properties of PNA. The synthesis of the first ruthenocene-PNA conjugate with a dodecamer, mixed-sequence PNA is described, and its properties are compared to a ferrocene-labeled analogue as well as an acetylated, metal-free derivative. The synthetic characteristics, chemical stability, analytical and thermodynamic properties, and the interaction with cDNA were investigated. Furthermore, the cytotoxicity of the PNA conjugates is determined on HeLa, HepG2, and PT45 cell lines. Finally, the cellular uptake of the metal-containing PNAs was quantified by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). An unexpectedly high cellular uptake to final concentrations of 4.2 mM was observed upon incubation with 50 μM solutions of the ruthenocene-PNA conjugate. The ruthenocene label was shown to be an excellent label in all respects, which is also more stable than its ferrocene analogue. Because of its high stability, low toxicity, and the lack of a natural background of ruthenium, it is an ideal choice for bioanalytical purposes and possible medicinal and biological applications like, e.g., the development of gene-targeted drugs.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号