首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   10篇
  197篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   8篇
  2013年   6篇
  2012年   13篇
  2011年   14篇
  2010年   2篇
  2009年   4篇
  2008年   10篇
  2007年   8篇
  2006年   10篇
  2005年   7篇
  2004年   12篇
  2003年   5篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1996年   2篇
  1995年   1篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
  1971年   4篇
排序方式: 共有197条查询结果,搜索用时 12 毫秒
91.
We recently showed that resistance exercise and ingestion of essential amino acids with carbohydrate (EAA+CHO) can independently stimulate mammalian target of rapamycin (mTOR) signaling and muscle protein synthesis in humans. Providing an EAA+CHO solution postexercise can further increase muscle protein synthesis. Therefore, we hypothesized that enhanced mTOR signaling might be responsible for the greater muscle protein synthesis when leucine-enriched EAA+CHOs are ingested during postexercise recovery. Sixteen male subjects were randomized to one of two groups (control or EAA+CHO). The EAA+CHO group ingested the nutrient solution 1 h after resistance exercise. mTOR signaling was assessed by immunoblotting from repeated muscle biopsy samples. Mixed muscle fractional synthetic rate (FSR) was measured using stable isotope techniques. Muscle protein synthesis and 4E-BP1 phosphorylation during exercise were significantly reduced (P < 0.05). Postexercise FSR was elevated above baseline in both groups at 1 h but was even further elevated in the EAA+CHO group at 2 h postexercise (P < 0.05). Increased FSR was associated with enhanced phosphorylation of mTOR and S6K1 (P < 0.05). Akt phosphorylation was elevated at 1 h and returned to baseline by 2 h in the control group, but it remained elevated in the EAA+CHO group (P < 0.05). 4E-BP1 phosphorylation returned to baseline during recovery in control but became elevated when EAA+CHO was ingested (P < 0.05). eEF2 phosphorylation decreased at 1 and 2 h postexercise to a similar extent in both groups (P < 0.05). Our data suggest that enhanced activation of the mTOR signaling pathway is playing a role in the greater synthesis of muscle proteins when resistance exercise is followed by EAA+CHO ingestion.  相似文献   
92.

Background

High-density oligonucleotide microarrays provide a powerful tool for assessing differential mRNA expression levels. Characterizing the noise resulting from the enzymatic and hybridization steps, called type I noise, is essential for attributing significance measures to the differential expression scores. We introduce scoring functions for expression ratios, and associated quality measures. Both the PM (Perfect Match) probes and PM-MM differentials (MM is the single MisMatch) are considered as raw intensities. We then characterize the log-ratio noise structure using robust estimates of their intensity dependent variance.

Results

We show the relationships between the obtained ratios and their quality measures. The complementarity of PM and PM-MM methods is emphasized by the probe sets signal to noise measures. Using a large set of replicate experiments, we demonstrate that the noise structure in the log-ratios very closely follows a local log-normal distribution for both the PM and PM-MM cases. Therefore, significance relative to the type I noise can be quantified reliably using the local STD. We discuss the intensity dependence of the STD and show that ratio scores >1.25 are significant in the mid- to high-intensity range.

Conclusions

The ratio noise structure inherent to high-density oligonucleotide arrays can be well described in terms of local log-normal ratio distributions with characteristic intensity dependence. Therefore, robust estimates of the local STD of these distributions provide a simple and powerful way for assessing significance (relative to type I noise) in differential gene expression. This approach will be helpful for improving the reliability of predictions from hybridization experiments in general.  相似文献   
93.
Naef F  Hacker CR  Patil N  Magnasco M 《Genome biology》2002,3(4):research0018.1-research001811

Background  

High-density oligonucleotide arrays (HDONAs) are a powerful tool for assessing differential mRNA expression levels. To establish the statistical significance of an observed change in expression, one must take into account the noise introduced by the enzymatic and hybridization steps, called type I noise. We undertake an empirical characterization of the experimental repeatability of results by carrying out statistical analysis of a large number of duplicate HDONA experiments.  相似文献   
94.
95.
96.
Common fragile sites (CFS) are specific chromosomal areas prone to form gaps and breaks when cells are exposed to stresses that affect DNA synthesis, such as exposure to aphidicolin (APC), an inhibitor of DNA polymerases. The APC-induced DNA damage is repaired primarily by homologous recombination (HR), and RAD51, one of the key players in HR, participates to CFS stability. Since another DNA repair pathway, the mismatch repair (MMR), is known to control HR, we examined the influence of both the MMR and HR DNA repair pathways on the extent of chromosomal damage and distribution of CFS provoked by APC and/or by RAD51 silencing in MMR-deficient and -proficient colon cancer cell lines (i.e., HCT-15 and HCT-15 transfected with hMSH6, or HCT-116 and HCT-116/3+6, in which a part of a chromosome 3 containing the wild-type hMLH1 allele was inserted). Here, we show that MMR-deficient cells are more sensitive to APC-induced chromosomal damage particularly at the CFS as compared to MMR-proficient cells, indicating an involvement of MMR in the control of CFS stability. The most expressed CFS is FRA16D in 16q23, an area containing the tumour suppressor gene WWOX often mutated in colon cancer. We also show that silencing of RAD51 provokes a higher number of breaks in MMR-proficient cells with respect to their MMR-deficient counterparts, likely as a consequence of the combined inhibitory effects of RAD51 silencing on HR and MMR-mediated suppression of HR. The RAD51 silencing causes a broader distribution of breaks at CFS than that observed with APC. Treatment with APC of RAD51-silenced cells further increases DNA breaks in MMR-proficient cells. The RNAi-mediated silencing of PARP-1 does not cause chromosomal breaks or affect the expression/distribution of CFS induced by APC. Our results indicate that MMR modulates colon cancer sensitivity to chromosomal breaks and CFS induced by APC and RAD51 silencing.  相似文献   
97.
Cesaretti M  Luppi E  Maccari F  Volpi N 《Glycobiology》2004,14(12):1275-1284
Heparin with high anticoagulant activity (activated partial thromboplastin time of 347 +/- 56.4 and anti-Xa activity of 317 +/- 48.3) was isolated from the marine clam species Tapes phylippinarum in an amount of approximately 2.1 mg/g dry animals. Agarose-gel electrophoresis showed a high content of the slow-moving heparin component (22 +/- 6.8%) and 78 +/- 5.4% of the fast-moving species. An average molecular mass of 13,600 was calculated by PAGE analysis, whereas a number average molecular weight Mn value of 10,700, a weight average molecular weight Mw of 14,900, and a dispersity index Mn/Mw of 1.386 were obtained by high-performance size-exclusion chromatography. Structural analysis of clam heparin, performed by depolymerizing heparin samples with heparinase (EC 4.2.2.7) and then separating the resulting unsaturated oligosaccharides by strong anion exchange-HPLC revealed the presence of large amounts (more than 130% than standard pharmaceutical heparin obtained from bovine intestine) of the oligosaccharide sequence bearing part of the ATIII-binding region, DeltaUA2S (1-->4)-alpha-D-GlcN2S6S (1-->4)-alpha-L-IdoA (1-->4)-alpha-D-GlcNAc6S (1-->4)-beta-D-GlcA (1-->4)-alpha-D-GlcN2S3S6S in the T. phylippinarum heparin, in comparison with bovine mucosal heparin and a sample of porcine mucosal heparin previously published. Furthermore, as expected from the oligosaccharide compositional analysis, due to the presence of a great mol % (80.6%) of the trisulfated disaccharide DeltaUA2S(1-->4)-alpha-D-GlcN2S6S, mollusc heparin is a more sulfated polysaccharide than bovine mucosal heparin (73.5%) and a sample of porcine mucosal (72.8%) heparin previously reported. To our knowledge, this is the first article describing a clam heparin having the ATIII binding site mainly identical to that of human and porcine intestinal mucosal heparins and bovine intestinal mucosal heparin but different from that found in beef lung heparin.  相似文献   
98.
Insulin promotes muscle anabolism, but it is still unclear whether it stimulates muscle protein synthesis in humans. We hypothesized that insulin can increase muscle protein synthesis only if it increases muscle amino acid availability. We measured muscle protein and amino acid metabolism using stable-isotope methodologies in 19 young healthy subjects at baseline and during insulin infusion in one leg at low (LD, 0.05), intermediate (ID, 0.15), or high (HD, 0.30 mUxmin(-1)x100 ml(-1)) doses. Insulin was infused locally to induce muscle hyperinsulinemia within the physiological range while minimizing the systemic effects. Protein and amino acid kinetics across the leg were assessed using stable isotopes and muscle biopsies. The LD did not affect phenylalanine delivery to the muscle (-9 +/- 18% change over baseline), muscle protein synthesis (16 +/- 26%), breakdown, or net balance. The ID increased (P < 0.05) phenylalanine delivery (+63 +/- 38%), muscle protein synthesis (+157 +/- 54%), and net protein balance, with no change in breakdown. The HD did not change phenylalanine delivery (+12 +/- 11%) or muscle protein synthesis (+9 +/- 19%), and reduced muscle protein breakdown (-17 +/- 15%), thus improving net muscle protein balance but to a lesser degree than the ID. Changes in muscle protein synthesis were strongly associated with changes in muscle blood flow and phenylalanine delivery and availability. In conclusion, physiological hyperinsulinemia promotes muscle protein synthesis as long as it concomitantly increases muscle blood flow, amino acid delivery and availability.  相似文献   
99.
Treatment of rabbit neutrophils with pertussis toxin, but not cholera toxin, inhibits the increases produced by formylmethionyl-leucyl-phenylalanine, leukotriene B4 and the calcium ionophore A23187 in the amounts of actin associated with the cytoskeletons. The increase in the cytoskeletal actin produced by phorbol 12-myristate, 13-acetate on the other hand is not affected by pertussis toxin. Incubation of the neutrophils with cholera toxin, unlike pertussis toxin, did not inhibit the fMet-Leu-Phe induced rise in the intracellular concentration of free calcium, and caused only a shift to the right of the dose-response curve of N-acetyl-beta-glucosaminidase release. This shift was more marked in the presence of 1-methyl-3-isobutylxanthine. In addition, the stimulated breakdown of phosphatidylinositol 4,5 bis-phosphate was inhibited by pertussis toxin. These results suggest that pertussis toxin acts at an early step in the signal transduction and does not affect the sequence of reactions initiated by the activation of the protein kinase C. Furthermore, the guanine nucleotide regulatory protein Gi, but not Gs, is closely involved in signal transduction in these cells.  相似文献   
100.
Whereas skin protein synthesis can be measured with different approaches, no method potentially applicable in humans is available for measurement of skin protein breakdown. To that end, we measured mixed skin fractional protein breakdown (FBR) in a rat model by use of a stable isotope method (tracee release method) originally developed to measure muscle protein breakdown. Skin mixed protein and collagen fractional synthesis rates (FSR) were also measured. A primed continuous infusion of L-[ring-(2)H(5)]phenylalanine and alpha-[5,5,5-(2)H(3)]ketoisocaproate (KIC) was given for 6 h. Arterial and skin phenylalanine and leucine free enrichments were measured at plateau (5-6 h) and during the decay that followed after the infusion was stopped. Skin FBR (%/h) was 0.260 +/- 0.011 with phenylalanine and 0.201 +/- 0.032 with KIC/leucine [P = not significant (NS)]. Mixed skin FSR (%/h) was 0.169 +/- 0.055 with phenylalanine and 0.146 +/- 0.020 with KIC/leucine (P = NS). Collagen FSR was 0.124 +/- 0.023%/h (P = NS vs. mixed protein FSR). The tracee release method is a sensitive method for measurement of skin protein breakdown; however, given the high intersubject variability of FSR, the calculation of skin net balance is not advisable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号