首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   34篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   6篇
  2020年   3篇
  2019年   6篇
  2018年   12篇
  2017年   8篇
  2016年   23篇
  2015年   25篇
  2014年   59篇
  2013年   64篇
  2012年   81篇
  2011年   123篇
  2010年   89篇
  2009年   79篇
  2008年   48篇
  2007年   49篇
  2006年   50篇
  2005年   37篇
  2004年   26篇
  2003年   23篇
  2002年   23篇
  2001年   3篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有883条查询结果,搜索用时 31 毫秒
781.
It is now widely accepted that the classic environmental risk factors for atherosclerosis only partly explain the incidence of coronary artery disease and the development of acute coronary syndromes. Therefore, genetic factors that vary among human populations seem to be involved in the clinical manifestations of such patients. Substantial data suggest that a significant proportion of genetic polymorphisms involved in endothelial function, inflammation, lipid metabolism, thrombosis and fibrinolysis are often present in patients with acute coronary syndromes. In particular, a common variant on chromosome 9p21 was recently identified to affect the risk of myocardial infarction. Here, we review the progress of candidate gene studies and genome-wide association studies in identifying the genetic bases of complex cardiovascular diseases such as acute coronary syndromes.  相似文献   
782.
By combining two living polymerizations, anionic and ring opening (ROP), the following novel multiblock multicomponent linear and miktoarm star (micro-star) polymer/polypeptide hybrids (macromolecular chimeras) were synthesized: Linear, PBLL-b-PBLG-b-PS-b-PBLG-b-PBLL; 3micro-stars, (PS)2(PBLG or PBLL), (PS)(PI)(PBLG or PBLL); 4micro-stars, (PS)2[P(alpha-MeS)](PBLG or PBLL), (PS)2(PBLG or PBLL)2 [PS, polystyrene; PI, polyisoprene; P(alpha-MeS), poly(alpha-methylstyrene); PBLG, poly(gamma-benzyl-L-glutamate); and PBLL, poly(-tert-butyloxycarbonyl-L-lysine)]. The procedure involves (a) the synthesis of end- or in-chain amino-functionalized polymers, by anionic polymerization high vacuum techniques and appropriate linking chemistry and (b) the use of the amino groups for the ROP of alpha-amino acid carboxyanhydrides (NCAs). Molecular characterization revealed the high molecular weight and compositional homogeneity of the macromolecular chimeras prepared. The success of the synthesis was based mainly on the high vacuum techniques used for the ROP of NCAs, ensuring the avoidance of unwanted polymerization mechanisms and termination reactions.  相似文献   
783.
Recordings of local field potentials (LFPs) reveal that the sensory cortex displays rhythmic activity and fluctuations over a wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical population, and we determined how the LFPs generated by the network encode information about input stimuli. We first considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations generated by inhibitory–excitatory neural interactions and encoded slow dynamic features of the input into slow LFP fluctuations mediated by stimulus–neural interactions. The model cortical network processed dynamic stimuli with naturalistic temporal structure by using low and high response frequencies as independent communication channels, again in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this frequency decomposition into independent information channels operated by the cortical network may be that of enhancing the capacity of the cortical column to encode our complex sensory environment.  相似文献   
784.
785.
786.
Osteosarcoma is the most common primary bone tumour associated with childhood and adolescence. The possible role of the small leucine-rich proteoglycan, lumican, in the growth and metastasis of various cancer types has recently been investigated. In this study, the expression of lumican was examined in moderately differentiated (MG-63) and well-differentiated (Saos 2) human osteosarcoma cell lines of high and low metastatic capability, respectively. Real-time PCR, western blotting with antibodies against the protein core and keratan sulfate, and specific enzymatic digestions were the methods employed. The two human osteosarcoma cell lines were found to express and secrete lumican partly substituted with keratan sulfate glycosaminoglycans. Importantly, the non-metastatic, well-differentiated Saos 2 cells produced lumican at rates that were up to sevenfold higher than those of highly metastatic MG-63 cells. The utilization of short interfering RNA specific for the lumican gene resulted in efficient down-regulation of its mRNA levels in both cell lines. The growth of Saos 2 cells was inhibited by lumican, whereas their migration and chemotactic response to fibronectin were found to be promoted. Lumican expression was negatively correlated with the basal level of Smad 2 activation in these cells, suggesting that lumican may affect the bioavailability of Smad 2 activators. By contrast, these cellular functions of highly aggressive MG-63 cells were demonstrated not to be sensitive to a decrease in their low endogenous lumican levels. These results suggest that lumican expression may be positively correlated with the differentiation and negatively correlated with the progression of osteosarcoma.  相似文献   
787.
4-Phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide (glucosyltriazolylacetamide) has been studied in kinetic and crystallographic experiments with glycogen phosphorylase b (GPb), in an effort to utilize its potential as a lead for the design of potent antihyperglycaemic agents. Docking and molecular dynamics (MD) calculations have been used to monitor more closely the binding modes in operation and compare the results with experiment. Kinetic experiments in the direction of glycogen synthesis showed that glucosyltriazolylacetamide is a better inhibitor (K(i) = 0.18 mM) than the parent compound alpha-D-glucose (K(i) = 1.7 mM) or beta-D-glucose (K(i) = 7.4 mM) but less potent inhibitor than the lead compound N-acetyl-beta-D-glucopyranosylamine (K(i) = 32 microM). To elucidate the molecular basis underlying the inhibition of the newly identified compound, we determined the structure of GPb in complex with glucosyltriazolylacetamide at 100 K to 1.88 A resolution, and the structure of the compound in the free form. Glucosyltriazolylacetamide is accommodated in the catalytic site of the enzyme and the glucopyranose interacts in a manner similar to that observed in the GPb-alpha-D-glucose complex, while the substituent group in the beta-position of the C1 atom makes additional hydrogen bonding and van der Waals interactions to the protein. A bifurcated donor type hydrogen bonding involving O3H, N3, and N4 is seen as an important structural motif strengthening the binding of glucosyltriazolylacetamide with GP which necessitated change in the torsion about C8-N2 bond by about 62 degrees going from its free to the complex form with GPb. On binding to GP, glucosyltriazolylacetamide induces significant conformational changes in the vicinity of this site. Specifically, the 280s loop (residues 282-288) shifts 0.7 to 3.1 A (CA atoms) to accommodate glucosyltriazolylacetamide. These conformational changes do not lead to increased contacts between the inhibitor and the protein that would improve ligand binding compared with the lead compound. In the molecular modeling calculations, the GOLD docking runs with and without the crystallographic ordered cavity waters using the GoldScore scoring function, and without cavity waters using the ChemScore scoring function successfully reproduced the crystallographic binding conformation. However, the GLIDE docking calculations both with (GLIDE XP) and without (GLIDE SP and XP) the cavity water molecules were, impressively, further able to accurately reproduce the finer details of the GPb-glucosyltriazolylacetamide complex structure. The importance of cavity waters in flexible receptor MD calculations compared to "rigid" (docking) is analyzed and highlighted, while in the MD itself very little conformational flexibility of the glucosyltriazolylacetamide ligand was observed over the time scale of the simulations.  相似文献   
788.
Phase-of-firing coding of natural visual stimuli in primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the hypothesis that neurons encode rich naturalistic stimuli in terms of their spike times relative to the phase of ongoing network fluctuations rather than only in terms of their spike count. We recorded local field potentials (LFPs) and multiunit spikes from the primary visual cortex of anaesthetized macaques while binocularly presenting a color movie. We found that both the spike counts and the low-frequency LFP phase were reliably modulated by the movie and thus conveyed information about it. Moreover, movie periods eliciting higher firing rates also elicited a higher reliability of LFP phase across trials. To establish whether the LFP phase at which spikes were emitted conveyed visual information that could not be extracted by spike rates alone, we compared the Shannon information about the movie carried by spike counts to that carried by the phase of firing. We found that at low LFP frequencies, the phase of firing conveyed 54% additional information beyond that conveyed by spike counts. The extra information available in the phase of firing was crucial for the disambiguation between stimuli eliciting high spike rates of similar magnitude. Thus, phase coding may allow primary cortical neurons to represent several effective stimuli in an easily decodable format.  相似文献   
789.
Two new bismacrocyclic Gd3+ chelates containing a specific Ca2+ binding site were synthesized as potential MRI contrast agents for the detection of Ca2+ concentration changes at the millimolar level in the extracellular space. In the ligands, the Ca2+-sensitive BAPTA-bisamide central part is separated from the DO3A macrocycles either by an ethylene (L1) or by a propylene (L2) unit [H4BAPTA is 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; H3DO3A is 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid]. The sensitivity of the Gd3+ complexes towards Ca2+ and Mg2+ was studied by 1H relaxometric titrations. A maximum relaxivity increase of 15 and 10% was observed upon Ca2+ binding to Gd2L1 and Gd2L2, respectively, with a distinct selectivity of Gd2L1 towards Ca2+ compared with Mg2+. For Ca2+ binding, association constants of log K = 1.9 (Gd2L1) and log K = 2.7 (Gd2L2) were determined by relaxometry. Luminescence lifetime measurements and UV–vis spectrophotometry on the corresponding Eu3+ analogues proved that the complexes exist in the form of monohydrated and nonhydrated species; Ca2+ binding in the central part of the ligand induces the formation of the monohydrated state. The increasing hydration number accounts for the relaxivity increase observed on Ca2+ addition. A 1H nuclear magnetic relaxation dispersion and 17O NMR study on Gd2L1 in the absence and in the presence of Ca2+ was performed to assess the microscopic parameters influencing relaxivity. On Ca2+ binding, the water exchange is slightly accelerated, which is likely related to the increased steric demand of the central part leading to a destabilization of the Ln–water binding interaction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
790.
Two substituted ureas of beta-D-glucose, N-acetyl-N'-beta-D-glucopyranosyl urea (Acurea) and N-benzoyl-N'-beta-D-glucopyranosyl urea (Bzurea), have been identified as inhibitors of glycogen phosphorylase, a potential target for therapeutic intervention in type 2 diabetes. To elucidate the structural basis of inhibition, we determined the structure of muscle glycogen phosphorylase b (GPb) complexed with the two compounds at 2.0 A and 1.8 A resolution, respectively. The structure of the GPb-Acurea complex reveals that the inhibitor can be accommodated in the catalytic site of T-state GPb with very little change in the tertiary structure. The glucopyranose moiety makes the standard hydrogen bonds and van der Waals contacts as observed in the GPb-glucose complex, while the acetyl urea moiety is in a favourable electrostatic environment and makes additional polar contacts with the protein. The structure of the GPb-Bzurea complex shows that Bzurea binds tightly at the catalytic site and induces substantial conformational changes in the vicinity of the catalytic site. In particular, the loop of the polypeptide chain containing residues 282-287 shifts 1.3-3.7 A (Calpha atoms) to accommodate Bzurea. Bzurea can also occupy the new allosteric site, some 33 A from the catalytic site, which is currently the target for the design of antidiabetic drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号