首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   12篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   8篇
  2016年   1篇
  2015年   10篇
  2014年   9篇
  2013年   14篇
  2012年   21篇
  2011年   22篇
  2010年   6篇
  2009年   7篇
  2008年   16篇
  2007年   9篇
  2006年   12篇
  2005年   8篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1976年   8篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
51.
Cathepsin X is a lysosomal cysteine protease, found predominantly in cells of monocyte/macrophage lineage. It acts as a monocarboxypepidase and has a strict positional and narrower substrate specificity relative to the other human cathepsins. In our recent studies we identified—β2 subunit of integrin receptors and α and γ enolase as possible substrates for cathepsin X carboxypeptidase activity. In both cases cathepsin X is capable to cleave regulatory motifs at C-terminus affecting the function of targeted molecules. We demonstrated that via activation of β2 integrin receptor Mac-1 (CD11b/CD18) active cathepsin X enhances adhesion of monocytes/macrophages to fibrinogen and regulates the phagocytosis. By activation of Mac-1 receptor cathepsin X may regulate also the maturation of dendritic cells, a process, which is crucial in the initiation of adaptive immunity. Cathepsin X activates also the other β2 integrin receptor, LFA-1 (CD11a/CD18) which is involved in the proliferation of T lymphocytes. By modulating the activity of LFA-1 cathepsin X causes cytoskeletal rearrangements and morphological changes of T lymphocytes enhancing ameboid-like migration in 2-D and 3-D barriers and increasing homotypic aggregation. The cleavage of C-terminal amino acids of α and γ enolase by cathepsin X abolishes their neurotrophic activity affecting neuronal cell survival and neuritogenesis.Key words: cathepsin X, integrin, enolase, T lymphocyte, macrophage, dendritic cell, adhesion, migration, neuritogenesisProteases comprise a group of enzymes that catalyse the cleavage of a peptide bond in a polypeptide chain by nucleophilic attack on the carbonyl carbon. The proteases are either exopeptidases cleaving one or a few amino acids at the N- or C-terminus of polypeptide chain or endopeptidases that cleave the peptide bond internally. According to the catalytic mechanism the endopeptidases are divided into aspartic, cysteine, serine, threonine and metallo endoproteases—see MEROPS database.1 To date, 561 genes encoding for proteases have been identified in human genome. Among them 148 genes encode for cysteine proteases including a group of eleven lysosomal cysteine proteases (members of C1 family) also called cathepsins. They exhibit different expression patterns, levels and specificities, all of which contribute to their differential physiological roles. Some of them, like cathepsins B, H, L and C are ubiquitously present in tissues, whereas others (cathepsins S, V, X, O, K, F and W) are expressed by specific cell types. Cysteine cathepsins were long believed to be responsible for the terminal protein degradation in the lysosomes, however, this view has changed dramatically when they have been found to be involved in a number of important cellular processes and pathologies.2,3In contrast to other cathepsins, cathepsin X was discovered only recently. Its gene,4,5 structure6,7 and activity properties8,9 show several unique features that distinguish it clearly from other human cysteine proteases. It has a very short pro-region7 and a three residue insertion motif which forms a characteristic “mini loop.”6 Cathepsin X exhibits carboxypeptidase activity6 and, in contrast to cathepsin B, the other carboxypeptidase, it does not act as an endopeptidase. Contrary to the first reports,4 cathepsin X is not widely expressed in cells and tissues, but is restricted to the cells of the immune system, predominantly monocytes, macrophages and dendritic cells.10 Higher levels of cathepsin X were also found in tumor and immune cells of prostate11 and gastric12 carcinomas and in macrophages of gastric mucosa, especially after infection by Helicobacter pylori.13 Recently it was shown that cathepsin X is abundantly expressed in mouse brain cells, in particular glial cells. Its upregulation was also detected in the brains of patients with Alzheimer disease.14The involvement of cathepsin X in signal transduction is implied by the integrin-binding motifs, present in its pro-form (RGD: Arg-Gly-Asp) and mature form (ECD: Glu-Cys-Asp).4,5 Moreover, cathepsin X binds cell surface heparan sulfate proteoglycans15 which are also involved in integrin regulation. A strong co-localization of pro-cathepsin X with β3 integrin subunit was demonstrated in our study in pro-monocytic U-937 cells.16 Further, it was reported that the pro-form of cathepsin X interacts with αvβ3 integrin through the RGD motif in lamellipodia of human umbilical vein endothelial cells (HUVECs).17 However, we showed that the active form of cathepsin X co-localized predominantly with β2 integrin subunit in various cells of monocytes/macrophage lineage. Active cathepsin X was shown to regulate β2 integrin-dependent adhesion, phagocytosis and T lymphocyte activation by interaction with macrophage antigen-1 (CD11b/CD18, Mac-1). We showed that inhibitors and monoclonal antibodies, capable to impair cathepsin X enzymatic activity, reduced the binding of differentiated U-937 cells to fibrinogen and polystyrene surface in a dose dependent manner. The co-localization of active cathepsin X with β2 integrin chain was particularly enhanced in interactions of monocyte/macrophages with endothelial and tumor cells.Besides in monocytes and macrophages the active cathepsin X plays a role in β2 integrin activation also in dendritic cells (DC), which are crucial for effective antigen presentation and initiation of T cell dependent immune response. Maturation of dendritic cells is accompanied by a range of morphological and cytoskeleton structure changes. In response to maturation stimuli in vitro, DCs rapidly adhere, develop polarity and assemble actin rich structures at the leading edge, known as podosomes.18 The adhesion of immature DCs to the extracellular matrix, is accompanied by recruitment of Mac-1 integrin receptor, which can be activated by cathepsin X. We have shown that, during maturation, cathepsin X translocates to the plasma membrane of maturing DCs, enabling Mac-1 activation and, consequently, cell adhesion.19 In mature DCs cathepsin X redistributes from the membrane to the perinuclear region, which coincides with the de-adhesion of DCs, formation of cell clusters and acquisition of the mature phenotype. Again, the inhibition of cathepsin X activity during DC differentiation and maturation reduced the capacity of DCs to stimulate T lymphocytes.β2 integrin receptors are important also in T lymphocyte functions, such as migration and invasion across the endothelium and tissues. Lymphocyte function-associated antigen-1 (CD11a/CD18, LFA-1), the predominant β2 integrin receptor in T lymphocytes enables cell-cell interactions and homotypic aggregation via LFA-1-ICAM-1 (intracellular adhesion molecule-1) interactions. LFA-1 can act also as a true signaling receptor, causing F-actin reorganization that leads to cytoskeletal changes of the cell20 and a switch from a spherical to a polarized shape.21 Although the concentration of cathepsin X in T lymphocytes is lower compared to monocytes and macrophages, we showed that it interacts with LFA-1 promoting cytoskeleton-dependent morphological changes and migration across 2D and 3D models of ICAM-1 and Matrigel.22,23 Its co-localization with LFA-1 was particularly evident at the trailing edge protrusion, the uropod, which plays an important role in T lymphocyte migration and cell-cell interactions (Fig. 1). Uropodal active cathepsin X cleaves C-terminal amino acids of β chain in LFA-1 promoting its high affinity conformation and the binding of the cytoskeletal protein talin. This interaction stabilizes the uropod and promotes its elongation (Jevnikar, et al. submitted).Open in a separate windowFigure 1Activation of LFA-1 integrin receptor by cathepsin X at the uropod of T lymphocyte promotes cytoskeleton-dependent morphological changes and cell migration.30We demonstrated that uropods of cathepsin X upregulated T lymphocytes elongate to extreme length and form cell-to-cell connections, the nanotubes (Obermajer, et al. in press). Membrane (or tunneling) nanotubes were recently found as a new principle of cell-to-cell communication enabling transmission of complex and specific messages to distant cells through a physically connected network. Calcium fluxes, vesicles and cell-surface components can all traffic between cells connected by nanotubes. In immune system nanotubes integrate communities of cells for a better coordination of their action in various stages of immune response. We showed that nanotubes of cathepsin X upregulated T lymphocytes could readily transfer cellular organelles such as mitochondria and lysosomes and proposed that nanotube mediated transfer makes possible T lymphocyte activation without the need for direct contact with antigen presenting cells.The exact mechanism of cathepsin X translocation towards plasma membrane and degradation of C-terminal amino acids of β chain remains unclear. In lysosomes cathepsin X can be found as a pro- and active form. After cell activation cathepsin X containing vesicles translocate towards the plasma membrane,16 as observed also for some other lysosomal proteases.24 During this process it is possible that pro-cathepsin X is activated by the other cysteine protease cathepsin L, as shown already in vitro.8 Both proteases were strongly co-localized with β2 integrin chain at plasma membrane of activated monocytes/macrophages and at uropodes of T lymphocytes. Simultaneous co-localization with the lysosomal markers demonstrates that at least the initial translocation of cathepsin X towards cytoplasmic tail of β2 integrin chain is vesicular. The interaction of cathepsin X with β2 integrin subunit was confirmed by immunoprecipitation and FRET.22 According to in vitro experiments we propose that cathepsin X cleaves sequentially C-terminal aminoacids F766, A767, E768 and S769 of β2 integrin subunit (Fig. 2) until reaching proline in penultimate position, confirming previous observation that the proline in S2 position leads to resistance to cathepsin X proteolysis.25 Also, our results are in agreement with the previously mentioned monocarboxypeptidase activity of cathepsin X.26,27 Since the signaling to and from the integrins is mainly regulated by the short cytoplasmic tail of β2 subunit,28 cathepsin X mediated β2 integrin truncation leads to regulation of the receptor signaling. The interaction of cytoplasmic tail with different cytoskeletal and regulatory proteins, such as talin, filamin, radixin and α-actinin is crucial for signal transduction and modulation of cytoskeleton.29Open in a separate windowFigure 2Cathepsin X activates LFA-1 by sequential cleavage of C-terminal amino acids of β2 integrin subunit.Besides β2 integrin chain we recently identified isozymes α and γ enolases as another molecular target for cathepsin X carboxypeptidase activity (Obermajer, et al. submitted). We demonstrated that cathepsin X sequentially cleaves C-terminal amino acids of both isozymes, abolishing their neurotrophic activity. On this way the neuronal cell survival and neuritogenesis can be regulated. Inhibition of cathepsin X activity increases the generation of plasmin, essential for neuronal differentiation and changes the length distribution of neurites, especially in the early phase of neurite outgrowth. Moreover, cathepsin X inhibition increases neuronal survival and reduces serum deprivation induced apoptosis, particularly in the absence of nerve growth factor.  相似文献   
52.
Glia have an emergent role in brain aging and disease. In the Drosophila melanogaster brain, ensheathing glia function as phagocytic cells and respond to acute neuronal damage, analogous to mammalian microglia. We previously reported changes in glia composition over the life of ants and fruit flies, including a decline in the relative proportion of ensheathing glia with time. How these changes influence brain health and life expectancy is unknown. Here, we show that ensheathing glia but not astrocytes decrease in number during Drosophila melanogaster brain aging. The remaining ensheathing glia display dysregulated expression of genes involved in lipid metabolism and apoptosis, which may lead to lipid droplet accumulation, cellular dysfunction, and death. Inhibition of apoptosis rescued the decline of ensheathing glia with age, improved the neuromotor performance of aged flies, and extended lifespan. Furthermore, an expanded ensheathing glia population prevented amyloid-beta accumulation in a fly model of Alzheimer's disease and delayed the premature death of the diseased animals. These findings suggest that ensheathing glia play a vital role in regulating brain health and animal longevity.  相似文献   
53.
Channel-forming peptides such as gramicidin A offer the opportunity to study the relationship between chemical structure and transport properties of an ion channel. This article summarizes a number of recent experiments with chemical analogs and derivatives of gramicidin A using artificial lipid bilayer membranes. The introduction of negative charges near the channel mouth leads to an increase in the cation transport rate. Hybrid channels consisting of a neutral and a negatively charged or of a positively and a negatively charged half-channel may be formed. The current-voltage characteristic of these hybrid channels exhibits a pronounced asymmetry.Experiments with charged derivatives of gramicidin A have been used in order to distinguish between different structural models of the dimeric channel; these studies strongly support Urry's model of a single-stranded, head-to-head associated helical dimer. In a further set of experiments gramicidin analogs with modified amino acid sequence were studied. It was found that a single substitution (tryptophan replaced by phenylalanine) leads to marked changes in the conductance of the channel. Analogs with a simplified amino acid sequence such as (L-Trp-D-Leu)7-L-Trp or L-Trp-Gly-(L-Trp-D-Leu)6-L-Trp are able to form cation permeable channels with similar properties as gramicidin A.  相似文献   
54.
The primary structure and conformation of the polypeptide antibiotic suzukacillin A are investigated. Suzukacillin A isolated from the Trichoderma viride strain 1037 and exhibits membrane modifying and lysing properties similar to those of alamethicin.A combined gas chromatographic mass spectrometric analysis of the trifluoroacetylated peptide methyl esters of partial hydrolysates revealed a tentative sequence of 23 residues including 10 2-methylalanines and one phenylalaninol, which shows many fragments known from alamethicin: Ac-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Glu(Pheol)-Gln-OH. All chiral amino acids and phenylalaninol have l-configuration. Ultraviolet and infrared spectroscopy, circular dichroism in various solvents and in particular 13C nuclear magnetic resonance have been used for a comparative study of suzukacillin with alamethicin. Suzukacillin has a partially α-helical structure and the helix content increases largely from polar to lipophilic solvents. Suzukacillin aggregates more strongly than alamethicin in aqueous media due to a longer α-helical part and higher number of aliphatic residues. A part of the α-helix is exceptionally stabilized due to 2-methylalanine residues shielding the peptide bonds from interactions with polar solvents. In lipophilic solvents and lecithin vesicles particularly large temperature induced reductions of the high α-helix content are found for alamethicin. Suzukacillin shows similar temperature coefficients in lipophilic media, however, in contrast to alamethicin a more linear change in intensity of the Cotton effects is observed.  相似文献   
55.
The primary structure and conformation of the polypeptide antibiotic suzukacillin A are investigated. Suzukacillin A is isolated from the Trichoderma viride strain 1037 and exhibits membrane modifying and lysing properties similar to those of alamethicin. A combined gas chromatographic mass spectrometric analysis of the trifluoroacetylated peptide methyl esters of partial hydrolysates revealed a tentative sequence of 23 residues including 10 2-methylalanines and one phenylalaninol, which shows many fragments known from alamethicin: Ac-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Glu(Pheol)-Gln-OH. All chiral amino acids and phenylalainol have L-configuration. Ultraviolet and infrared spectroscopy, circular dichroism in various solvents and in particular 13C nuclear magnetic resonance have been used for a comparative study of suzukacillin with alamethicin. Suzukacillin has a partially alpha-helical structure and the helix content increases largely from polar to lipophilic solvents. Suzukacillin aggregates more strongly than alamethicin in aqueous medis due to a longer alpha-helical part and higher number of aliphatic residues. A part of the alpha-helix is exceptionally stabilized due to 2-methylalanine residues shielding the peptide bonds from interactions with polar solvents. In lipophilic solvents and lecithin vesicles particularly large temperature induced reductions of the high alpha-helix content are found for alamethicin. Suzukacillin shows similar temperature coefficients in lipophilic media, however, in contrast to alamethicin a more linear change in intensity of the Cotton effects is observed.  相似文献   
56.
Cystatin F is a recently discovered type II cystatin expressed almost exclusively in immune cells. It is present intracellularly in lysosome-like vesicles, which suggests a potential role in regulating papain-like cathepsins involved in antigen presentation. Therefore, interactions of cystatin F with several of its potential targets, cathepsins F, K, V, S, H, X and C, were studied in vitro. Cystatin F tightly inhibited cathepsins F, K and V with Ki values ranging from 0.17 nM to 0.35 nM, whereas cathepsins S and H were inhibited with 100-fold lower affinities (Ki approximately 30 nM). The exopeptidases, cathepsins C and X were not inhibited by cystatin F. In order to investigate the biological significance of the inhibition data, the intracellular localization of cystatin F and its potential targets, cathepsins B, H, L, S, C and K, were studied by confocal microscopy in U937 promonocyte cells. Although vesicular staining was observed for all the enzymes, only cathepsins H and X were found to be colocalized with the inhibitor. This suggests that cystatin F in U937 cells may function as a regulatory inhibitor of proteolytic activity of cathepsin H or, more likely, as a protection against cathepsins misdirected to specific cystatin F containing endosomal/lysosomal vesicles. The finding that cystatin F was not colocalized with cystatin C suggests distinct functions for these two cysteine protease inhibitors in U937 cells.  相似文献   
57.
Copper is found incorporated into the crystal structure of cytosine monohydrate grown from aqueous solution of commercially available cytosine. Upon ionizing irradiation, the crystals exhibited the electron paramagnetic resonance (EPR) spectra characteristic of Cu(II) complex. Planar coordination bonding to the cupric ion, having three nitrogen atoms and an oxygen as ligands, is interpreted to bridge two cytosine molecules, replacing the two cytosine-cytosine hydrogen bonds present in pure crystals. The EPR signals are much stronger for crystals grown from the solutions to which small amount of copper powder were added.  相似文献   
58.

Background  

The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD) to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR) and 3D ultrasound (US) image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper.  相似文献   
59.
60.
Systemic lupus erythematosus (SLE) is a complex disease resulting from inflammatory responses of the immune system against several autoantigens. Inflammation is conditioned by the continuous presence of autoantibodies and leaked autoantigens, e.g. from not properly cleared dying and dead cells. Various soluble molecules and biophysical properties of the surface of apoptotic cells play significant roles in the appropriate recognition and further processing of dying and dead cells. We exemplarily discuss how Milk fat globule epidermal growth factor 8 (MFG-E8), biophysical membrane alterations, High mobility group box 1 (HMGB1), C-reactive protein (CRP), and anti-nuclear autoantibodies may contribute to the etiopathogenesis of the disease. Up to date knowledge about these key elements may provide new insights that lead to the development of new treatment strategies of the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号